京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA数据分析师 出品
编辑:Mika
作者:杨迅 CDA Level Ⅰ 持证人
大家好,我叫杨迅,是一名CDA Level Ⅰ 持证人,今天很高兴跟大家分享一下我的CDA认证备考经验。
我毕业后就职国内某头部保险集团任 IT 产品经理,因负责数仓和指标体系的搭建,故需对数据统计分析相关内容有较深入的掌握。在了解到 CDA 后,基于“既然学了不如顺便拿个证”的心态报了名。
总的来说 Level Ⅰ 的内容是比较基础的,我认为所有产品经理至少需要掌握 Level Ⅰ 所要求的数据分析能力,对于工作中用户调研、行为数据分析、结构性思维等方面都会有所帮助。若从事专业的数据分析工作,还需要进一步掌握更高级别的数据分析技能。

我主要是工作中正好需要用到相关的知识,所以平时工作本身也是对相关内容的学习和实践。
另外下班后我会找时间把推荐的几本书都好好的看看,重要的部分梳理一下笔记。
只要根据自己的时间,把推荐的书都看完,把 CDA 提供的一系列配套课程学完,应对考试完全是没问题的,其实重点还是要看有没有真的学到东西。
说实话,Level Ⅰ 的难度并不是很大,如果要挑个重点的话我觉得是『业务分析方法与模型』部分。这部分占比最重,同时知识点也最分散,不像统计学和数据库一样都是十分成熟的知识体系,所以这部分在学校也不可能体系化的学习过。
在准备这部分时需要根据考纲大范围的搜寻相关资料和知识点,然后进行整理,尽可能自己搭建核心知识体系。
在这里,仅就考纲内容推荐大家几本相关度较高的书吧。
第一本是《统计学(第七版)》贾俊平、何晓群、金勇进编著,里面概率分布、统计抽样、参数估计、假设检验、列联分析、方差分析、线性回归等都是考纲中统计分析部分重点考核的内容。这本书是『十二五』普通高等教育本科教材,如果是理工科的上学时应该都学过,忘记的找出来复习一下就行了。
第二本是《数据库系统概论(第五版)》王珊、萨师煊编著,这本也是大学教材,比较全面地介绍了数据库应用相关的基础知识,涵盖了 Level Ⅰ 考试中与数据库相关的全部知识。
第三本是《数据仓库工具箱(第三版)——维度建模权威指南》Ralph Kimball 和 Margy Ross 编著,若仅为考试,该书可重点看前三章,详细介绍了数据仓库的发展历程和维度建模技术的使用方法,对应考纲中多维度数据分析部分的内容。第三章以后是维度建模技术在各个行业的具体实践应用,对从事数仓等相关领域工作的人会有很大帮助。
最后推荐几本 CDA 考纲中也推荐过的书,《数据决策-企业数据的管理、分析与应用》《活用数据-驱动业务的数据分析实战》《数据化管理-洞悉零售及电子商务运营》。这三本书对应考纲中业务分析方法、分析报告、Excel 使用技巧等内容,其中《活用数据》这本也涉及到部分统计学内容,不过其中存在几处公式错误,大家注意甄别,有疑问要以《统计学(第七版)》内容为准。《活用数据》中还用到了 SPSS 工具,感兴趣的可以看《SPSS 统计分析基础/高级教程(第三版)》,也是大学教材。
最后想跟大家说的是, 获得证书只是对现阶段自己水平的一个肯定,将来还是要坚持不断学习的。
多读书多学习,读书就像吃饭,虽然难以马上看到收益,但是想要长远的走下去,就离不开一日三餐。
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26