京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA数据分析师 出品
编辑:Mika
作者:杨迅 CDA Level Ⅰ 持证人
大家好,我叫杨迅,是一名CDA Level Ⅰ 持证人,今天很高兴跟大家分享一下我的CDA认证备考经验。
我毕业后就职国内某头部保险集团任 IT 产品经理,因负责数仓和指标体系的搭建,故需对数据统计分析相关内容有较深入的掌握。在了解到 CDA 后,基于“既然学了不如顺便拿个证”的心态报了名。
总的来说 Level Ⅰ 的内容是比较基础的,我认为所有产品经理至少需要掌握 Level Ⅰ 所要求的数据分析能力,对于工作中用户调研、行为数据分析、结构性思维等方面都会有所帮助。若从事专业的数据分析工作,还需要进一步掌握更高级别的数据分析技能。

我主要是工作中正好需要用到相关的知识,所以平时工作本身也是对相关内容的学习和实践。
另外下班后我会找时间把推荐的几本书都好好的看看,重要的部分梳理一下笔记。
只要根据自己的时间,把推荐的书都看完,把 CDA 提供的一系列配套课程学完,应对考试完全是没问题的,其实重点还是要看有没有真的学到东西。
说实话,Level Ⅰ 的难度并不是很大,如果要挑个重点的话我觉得是『业务分析方法与模型』部分。这部分占比最重,同时知识点也最分散,不像统计学和数据库一样都是十分成熟的知识体系,所以这部分在学校也不可能体系化的学习过。
在准备这部分时需要根据考纲大范围的搜寻相关资料和知识点,然后进行整理,尽可能自己搭建核心知识体系。
在这里,仅就考纲内容推荐大家几本相关度较高的书吧。
第一本是《统计学(第七版)》贾俊平、何晓群、金勇进编著,里面概率分布、统计抽样、参数估计、假设检验、列联分析、方差分析、线性回归等都是考纲中统计分析部分重点考核的内容。这本书是『十二五』普通高等教育本科教材,如果是理工科的上学时应该都学过,忘记的找出来复习一下就行了。
第二本是《数据库系统概论(第五版)》王珊、萨师煊编著,这本也是大学教材,比较全面地介绍了数据库应用相关的基础知识,涵盖了 Level Ⅰ 考试中与数据库相关的全部知识。
第三本是《数据仓库工具箱(第三版)——维度建模权威指南》Ralph Kimball 和 Margy Ross 编著,若仅为考试,该书可重点看前三章,详细介绍了数据仓库的发展历程和维度建模技术的使用方法,对应考纲中多维度数据分析部分的内容。第三章以后是维度建模技术在各个行业的具体实践应用,对从事数仓等相关领域工作的人会有很大帮助。
最后推荐几本 CDA 考纲中也推荐过的书,《数据决策-企业数据的管理、分析与应用》《活用数据-驱动业务的数据分析实战》《数据化管理-洞悉零售及电子商务运营》。这三本书对应考纲中业务分析方法、分析报告、Excel 使用技巧等内容,其中《活用数据》这本也涉及到部分统计学内容,不过其中存在几处公式错误,大家注意甄别,有疑问要以《统计学(第七版)》内容为准。《活用数据》中还用到了 SPSS 工具,感兴趣的可以看《SPSS 统计分析基础/高级教程(第三版)》,也是大学教材。
最后想跟大家说的是, 获得证书只是对现阶段自己水平的一个肯定,将来还是要坚持不断学习的。
多读书多学习,读书就像吃饭,虽然难以马上看到收益,但是想要长远的走下去,就离不开一日三餐。
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24