
大数据比想象中更“靠谱”
今天,大数据虽然已经不是什么新鲜词儿,但是大数据却总能成为热门话题。在不久前结束的巴西足球世界杯赛上,除了球星是人们追捧的对象,大数据也成为宠儿。有人甚至将大数据称为德国队世界杯赛场上的“第12人”,而包括谷歌、百度、微软等在内的互联网公司和投资银行以及新闻机构都利用大数据工具对世界杯赛事结果进行了准确预测。当前,尽管有关大数据的质疑仍然存在,但是大数据的落地速度正在加快,依托大数据而生的新奇应用正在不断涌现,不知不觉间大数据已经在改变我们的生活。
颠覆传统的大数据
美国利用大数据提升社会治理水平、维护社会和谐稳定,商业公司用大数据预测各大赛事的结果,医疗机构利用大数据提升医疗水平,个人依靠大数据了解并管理自身健康情况……在大数据概念兴起之初,很多人都在问大数据究竟能干什么。今天,一个个事实正在回答这个问题,大数据越来越能干,无论是在互联网领域、金融行业、医疗行业以及制造业,大数据都能够派上用场。有观点认为,大数据提升了人们的想象力。还有观点认为,大数据本质上是催生了效能革命,未来的大数据技术可以应用在任何一个领域,具备改变甚至颠覆传统的力量。
大数据有预测未来的能力。除了在美国大选和奥斯卡大奖预测中有惊人表现外,在刚刚结束的巴西世界杯上,大数据又一次展现了“预言帝”的魅力。利用Opta Sports的数据,谷歌评估了每个职业足球联盟过去多个赛季的情况以及世界杯小组赛期间的统计数据,最终成功预测所有的16强席位。同样是利用大数据预测巴西世界杯成绩,微软建立了一个复杂的数据模型,最终在淘汰赛阶段场场命中。
当然,对于商业社会而言,大数据“预测帝”的真正潜力还不仅仅如此。大数据的预测能力往往意味着效率、价值以及成功的商业模式。通过对市场和用户数据的整合、分析,企业不仅更加懂得用户的“心”,同时还将更快速地实现资源分配,优化产品,提升效率。在市场竞争中,谁具备了这种能力,谁无疑就将立于不败之地。
对于一个国家而言,大数据也是意义非凡。作为大数据应用的先行者,美国政府对于大数据空前重视,其将大数据提升到了战略层面。2012年3月,美国奥巴马政府宣布推出“大数据的研究和发展计划”。该计划涉及美国国家科学基金、美国国家卫生研究院、美国能源部、美国国防部、美国国防部高级研究计划局、美国地质勘探局6个联邦政府部门,承诺将通过实际的资金投入,大力推动、改善与大数据相关的收集、组织和分析工具及技术,以推进从大量的、复杂的数据集合中获取知识和洞见的能力,尤为值得一提的是,美国政府自身也在践行数据开发策略,在美国联邦政府看来,“数据是一项有价值的国家资本,应对公众开放,而不是把其禁锢在政府体制内”。
大数据正在被看做是一种国家竞争力,越来越多的国家关注和推动本国大数据产业的发展。在我国,大数据的地位也在不断提升,2014年,大数据首次被写入我国政府工作报告,报告指出,要设立新型产业创业创新平台,在大数据等方面赶超先进,引领未来产业发展。
大数据产业日渐成熟
当前,各大巨头纷纷布局大数据市场。2014年上半年,就频频传出包括谷歌、苹果等公司收购大数据技术公司的消息。而随着市场主体的不断增多,大数据的产业链正在不断完善。无论在产业链的上游、中游还是下游都涌现出一批能够掌握相关标准、技术并推出商用级产品的公司。据全球云计算提供商rackspace预测,2014年大数据应用生态系统将出现,提供明确的商业价值和商业回报。
国外市场风生水起,国内市场也是热闹非凡。就在上周,国内的三大互联网公司BAT(百度、阿里巴巴、腾讯)先后宣布在大数据领域的“新动作”:阿里巴巴将其电商平台上数万家企业的交易数据开放给包括中行、招行、建行等在内的7家银行,联手为中小企业提供基于网商信用的无抵押贷款;百度则与北京市政府联手,推出基于大数据监测的健康管理产品“健康云”,解决百姓看病难问题,三年内将覆盖1000万北京市民;腾讯牵手国内外知名高校,成立腾讯互联网与社会研究院,发起大数据社会化研究,并培养相关人才。
除了角逐者的不断增多、产业链的日渐庞大,大数据技术也正在不断进步。众所周知,零散的数据本身并没有太多价值,但是如果有了大数据分析工具,数据不仅会“说话”,还具备神奇的“预测”能力。业界一直认为,只有通过大数据分析技术才能发挥数据的价值,如果将大数据比做是一个隐藏在地下的巨大金矿,那么发掘这个金矿的工具就只能是——大数据分析工具。
大数据分析工具的数量正在不断增多,大数据分析技术的准确度也在不断提升,各大公司在世界杯预测中的表现就足以证明。而得益于云计算技术的发展,基于云计算的大数据分析平台也更加完善,这就意味着在云计算弹性、低成本的特性下,众多的中小企业也可以向像亚马逊、谷歌这样的大企业一样完成大数据分析。同时,大数据的采集、存储和处理技术也正在快速发展。
客观而言,今天的大数据还是新生事物,虽然产业发展的步伐正在加快,但是仍然不能满足人们对于大数据的想象。不过,人们已经在现有的大数据应用中看到了希望,整个社会向“大数据时代”迈进已经是必然方向。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29