京公网安备 11010802034615号
经营许可证编号:京B2-20210330
网易大数据瞄准金融、制造与零售业
经过IT科技企业此前密集的市场教育,我们对大数据这一词并不陌生。不过令人吃惊的是,虽然大数据普及了这么多年,但已经普遍运用了大数据的企业,却并不如我们想象的那样占据了主导地位。据移动信息化研究中心数据显示,截至2016年11月,国内普遍应用了大数据的企业只占8.8%,更多的企业还在处于观望或了解阶段。
因为对于金融、制造、零售等行业的企业来说,他们自身的业务属性附带了大量可以接触普通大众的路径,且出于战略分析、经营管理、生产、销售营销、征信、风控等方面的需求,能自我优化分析模型、探寻未知事物关联性的大数据分析显得尤为重要。
但在企业应用大数据的过程中,往往会遇到以下瓶颈——组建自有大数据团队技术门槛高且周期长;利用公有云服务数据安全不可控。“金融、制造、零售等传统行业在应用大数据过程中主要有3大难题——技术、效率、安全。助力企业数字化创新,所有的云计算、大数据厂商都需要解决这些用户痛点问题,”网易大数据的负责人介绍。自去年开始,网易大数据为了助力企业数字化创新,在这方面进行了有益的探索。
痛点一:技术
技术驱动生产与销售,已成为互联网发展中的共识。
据了解,网易大数据建立在网易19年来积累的数据处理技术之上,已为网易电商、金融、游戏、教育、娱乐等业务模块提供了快速安全可靠的大数据服务。目前,网易杭州研究院的大数据平台每天要处理PB级的数据,日运行作业数超过7万,大量的计算量造就了网易云大数据出众的技术基因。
发展至今,网易大数据处理技术主要体现在以下3大产品——网易猛犸(大数据开发计算平台)、网易有数(敏捷数据分析平台)、网易数据资产中心。网易猛犸覆盖数据传输、计算及作业流调度,通过降低大数据技术门槛,帮助金融、制造、零售等企业提高数据使用效率、加速大数据应用落地;网易有数作为敏捷数据可视化分析平台,能让业务人员通过可视化的交互,从多维度分析比较猛犸大数据平台里面中的数据,快速响应业务变化;网易数据资产中心通过深度加工网易和第三方大量分散的用户数据,汇聚、清洗、深度建模,以标签形式全方位量化用户,形成精准用户画像,为金融企业的征信、制造和零售企业的营销等业务提供了可靠的数据支撑。
痛点二:效率
一家商业企业从创立之日起,就背负了名为“效率”的使命,它的一大核心追求就是用一种超越当下能力的方式去制造和生产、销售,在制造、零售等行业更是如此。
在网易大数据服务体系里,不管是网易猛犸、网易有数还是数据资产,均实现了可视化的交互,将数据分析、数据建模、数据处理等业务的门槛降得足够低,经过一定培训的业务人员就能独立进行数据分析。这样一来,企业可以将人才培养时间及人力资金投入大幅减少,获得高效的数据处理分析、快速响应变化的能力,并运用到生产和制造的各个环节。
痛点三:安全
对于金融、制造、零售等正在数字化转型的企业来说,安全可控是最主要考虑的问题。在云服务市场,相比于公有云服务,私有云的安全性更值得信赖。在中国信息通信研究院在2015年的行业调查报告中显示,一半以上的企业偏好使用私有云,其中69% 的企业认为私有云可控性强,安全性更好。
网易大数据顺应这一市场趋势,在大数据服务方面为企业用户提供了专业私有化部署的解决方案,让企业的数据资产安全可控的掌握在自己手里。
网易云的每一款产品都是为解决企业业务的具体场景、具体问题而设计,网易大数据服务亦是如此,其服务整合了全网易数据处理能力,致力为客户提供战略规划、经营管理、产品研发、市场运营等多个场景下的全方位大数据服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26