
网易大数据瞄准金融、制造与零售业
经过IT科技企业此前密集的市场教育,我们对大数据这一词并不陌生。不过令人吃惊的是,虽然大数据普及了这么多年,但已经普遍运用了大数据的企业,却并不如我们想象的那样占据了主导地位。据移动信息化研究中心数据显示,截至2016年11月,国内普遍应用了大数据的企业只占8.8%,更多的企业还在处于观望或了解阶段。
因为对于金融、制造、零售等行业的企业来说,他们自身的业务属性附带了大量可以接触普通大众的路径,且出于战略分析、经营管理、生产、销售营销、征信、风控等方面的需求,能自我优化分析模型、探寻未知事物关联性的大数据分析显得尤为重要。
但在企业应用大数据的过程中,往往会遇到以下瓶颈——组建自有大数据团队技术门槛高且周期长;利用公有云服务数据安全不可控。“金融、制造、零售等传统行业在应用大数据过程中主要有3大难题——技术、效率、安全。助力企业数字化创新,所有的云计算、大数据厂商都需要解决这些用户痛点问题,”网易大数据的负责人介绍。自去年开始,网易大数据为了助力企业数字化创新,在这方面进行了有益的探索。
痛点一:技术
技术驱动生产与销售,已成为互联网发展中的共识。
据了解,网易大数据建立在网易19年来积累的数据处理技术之上,已为网易电商、金融、游戏、教育、娱乐等业务模块提供了快速安全可靠的大数据服务。目前,网易杭州研究院的大数据平台每天要处理PB级的数据,日运行作业数超过7万,大量的计算量造就了网易云大数据出众的技术基因。
发展至今,网易大数据处理技术主要体现在以下3大产品——网易猛犸(大数据开发计算平台)、网易有数(敏捷数据分析平台)、网易数据资产中心。网易猛犸覆盖数据传输、计算及作业流调度,通过降低大数据技术门槛,帮助金融、制造、零售等企业提高数据使用效率、加速大数据应用落地;网易有数作为敏捷数据可视化分析平台,能让业务人员通过可视化的交互,从多维度分析比较猛犸大数据平台里面中的数据,快速响应业务变化;网易数据资产中心通过深度加工网易和第三方大量分散的用户数据,汇聚、清洗、深度建模,以标签形式全方位量化用户,形成精准用户画像,为金融企业的征信、制造和零售企业的营销等业务提供了可靠的数据支撑。
痛点二:效率
一家商业企业从创立之日起,就背负了名为“效率”的使命,它的一大核心追求就是用一种超越当下能力的方式去制造和生产、销售,在制造、零售等行业更是如此。
在网易大数据服务体系里,不管是网易猛犸、网易有数还是数据资产,均实现了可视化的交互,将数据分析、数据建模、数据处理等业务的门槛降得足够低,经过一定培训的业务人员就能独立进行数据分析。这样一来,企业可以将人才培养时间及人力资金投入大幅减少,获得高效的数据处理分析、快速响应变化的能力,并运用到生产和制造的各个环节。
痛点三:安全
对于金融、制造、零售等正在数字化转型的企业来说,安全可控是最主要考虑的问题。在云服务市场,相比于公有云服务,私有云的安全性更值得信赖。在中国信息通信研究院在2015年的行业调查报告中显示,一半以上的企业偏好使用私有云,其中69% 的企业认为私有云可控性强,安全性更好。
网易大数据顺应这一市场趋势,在大数据服务方面为企业用户提供了专业私有化部署的解决方案,让企业的数据资产安全可控的掌握在自己手里。
网易云的每一款产品都是为解决企业业务的具体场景、具体问题而设计,网易大数据服务亦是如此,其服务整合了全网易数据处理能力,致力为客户提供战略规划、经营管理、产品研发、市场运营等多个场景下的全方位大数据服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09