
数据批处理--R语言里最重要的一个函数家族:*pply
之前我们讲过循环,简单讲解了向量计算,它可以代替循环进行比较搞笑的批量计算,试想计算数据框中的总收入加上10,我们没必要进行循环计算这一列的每一个元素与10的和,只需要把这一列当成一个向量执行就可以了,这就是向量计算,但是问题来了,如果我要数据框中所有列都加上10或者求所有列的均值、中位数又或对它们调用更加复杂的函数,该怎么办?第一个想到的还是循环,但是R里面循环很慢这时*pply家族的函数就派上用场了,专门完成比向量更高层次的批量处理。
apply函数
temp <- data.frame(a = rnorm(30, mean = 0), b = rnorm(30, 2), c = rnorm(30, 4))
apply(X = temp, MARGIN = 2, FUN = mean)
apply(temp, 2, sd)
apply(temp, 1, mean)
apply(temp, 2, function(x) length(x[x > 1]))
1行生成一个数据框,它每一列的数都是从一个正态分布中抽取的样本,描述一个正态分布的样本集至少要包含三个要素:样本数、均值mean、标准差sd,函数rnorm的参数也主要包含这三个要素,主要用于随机产生一个指定特征的正态分布样本集,这里a列表示随机抽取一个包含30个样本,均值为0,标准差为1(默认是1)的向量,然后赋值给a列,b为随机抽取一个包含30个样本均值为2的正态分布向量,c同样解释;为了验证抽样效果,我们可以求每一列的均值看看和设定的是否一样,这里不需要循环,只用apply函数即可,参数X(大写)用于指定数据集,MARGIN用于指定是对行计算还是对列计算,行用1表示,列2表示,也可以同时进行行和列计算,最后一个参数FUN指定调用的函数,连起来解释将temp中的每一列丢给mean函数计算求均值,可以看到第一列的均值接近0,第二列接近2,第三列接近4,和我们设定的一样;3行对每一列求标准差,可以看到标准差都接近1,和默认的标准差一样;4行对每一行求均值;5行使用了自编函数,这里是一个匿名函数,所谓匿名函数就是没有函数名,它统计x中大于1的个数,这句整体连起来是将temp的每一列丢给匿名函数,计算每一列中大于1的数值个数,有意思的是*pply家族大多数用于自编函数,进行一些批量的特殊操作。
除了对矩阵或者数据框进行操作以外,我们有时候还会用到对list的批量操作,这就需要用到lapply或者sapply函数了,
lapply函数
temp <- list(a = rnorm(30, mean = 0), b = rnorm(10, 2), c = rnorm(20, 4))
lapply(X = temp, FUN = length)
length(temp)
myfun <- function(x) {
a <- median(x)
b <- mean(x)
return(c(a, b))
}
lapply(temp, myfun)
1行创建了一个包含3个向量元素的list;2行使用lapply函数将list的每一个元素丢给length函数,统计每一个元素的长度,返回的结果是一个和X等长的list,包含3个计数结果;4行返回temp的长度为3;5行起编了一个自编函数myfun,它计算x的中位数和均值,并将结果捆绑为向量返回;最后一行将temp应用于自编函数myfun,返回计算结果,结果是一个list,和temp等长,包含三个向量,每个向量包含两个元素,即temp中每个向量的中位数和均值。
有时候我们需要向函数传递多个参数,然后进行批量操作,如下:
lapply传递多个参数
myfun2 <- function(x, y) {
a <- median(x + y)
b <- mean(x - y)
return(list(a, b))
}
b = 3
lapply(X = temp, myfun2, y = b)
1行设计了一个自编函数myfun2,它需要用户传递两个参数:x、y;最后一行使用lapply传递多个参数,只需要在FUN后面继续赋值FUN所需的参数就可以了,比如myfun2需要y参数,我们就在后面赋值y = b,这样就可以完成传参了,表示temp中每个元素向量都要和y一起参与计算,是整体的y不是y下面的每一元素,因为temp是按元素被lapply传递,而y不是,y是整体赋值。
sapply函数
sapply(X = temp, FUN = myfun, simplify = F)
sapply(X = temp, FUN = myfun, simplify = T)
sapply函数就是lapply的一个简化版本,因为它添加了simplify参数而更名为sapply,我们看到在simplify等于F时,它返回的结果和lapply一样是个list,当simplify为T时它就将结果整理成了一个矩阵,其实这个使用do.call函数也可以将lapply的结果转化为矩阵,后面应用到很多,原因是我已经忘了sapply函数。
另外一个传递多个参数进行建模的函数为mapply,这个函数很重要,一般在模型比较的交叉检验时经常用到,比如后面章节比较随机森林的树数对模型的影响时就用到了,它的一个作用就是避免多重循环,因为它和lapply的多参数传递不同,它是将多个参数的元素一一对应传递的。
mapply函数
x <- 1:3
y <- c(4, 2, 2)
z <- c(1, 3, 4)
myfun3 <- function(x, y, z) {
m <- y + z*x
}
mapply(myfun3, x, y, z)
lapply(x, myfun3, y = y, z = z)
前三行创建了三个向量,4行创建了一个自编函数myfun3;mapply函数将x、y、z的元素一一对应的传递给myfun3,返回的变量是一个向量,包含了3个元素,因为x、y、z的元素共产生了3次一一对应的关系,看到了么,如果你将要使用一个三重循环就可以使用这这种方法避免,速度快很多,具体用例请参看舆情监控的章节;而lapply返回的结果就比较复杂了,所以它们的传参逻辑不是一回事。
除了上面讲到的函数以外,*pply家族还有很多变种,什么ddply、vapply、rapply等等,大同小异根本没必要记忆,因为上面的函数足够完成它们的工作,比如tapply函数比较像分组函数,可以使用之前的透视表函数替代他,更加方便。其实一旦你搞通了之后,就会发现很多函数都是浮云,我仅仅用到两个*pply函数lapply和mapply,其他的都被其他函数替代掉了。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08LSTM 输出不确定的成因、影响与应对策略 长短期记忆网络(LSTM)作为循环神经网络(RNN)的一种变体,凭借独特的门控机制,在 ...
2025-07-07统计学方法在市场调研数据中的深度应用 市场调研是企业洞察市场动态、了解消费者需求的重要途径,而统计学方法则是市场调研数 ...
2025-07-07CDA数据分析师证书考试全攻略 在数字化浪潮席卷全球的当下,数据已成为企业决策、行业发展的核心驱动力,数据分析师也因此成为 ...
2025-07-07