京公网安备 11010802034615号
经营许可证编号:京B2-20210330
▌ 问1:做数据分析有前途吗?
答1:有!
▌ 问2:那为啥我感觉不到?!
答2:因为“数据分析”四个字下边,挂羊头卖狗肉的多。最经典的,就是每天导出excel表,然后做个“同比、环比”ppt的数据分析专员。名为数据分析,实则就是普通文员。
▌ 问3:对对对!我就是这种excel专员,我还有前途吗?
答3:当然有。前途就是努力学习sql取数、python、PowerBI等工具,然后熟悉下自己整理的excel字段的业务含义(一般都是销售日报、客服日报之类)。跳一下槽就好了。
▌ 问4:那么,什么样的公司有前途一点?
答4:以下3个条件,满足一个的都能考虑,满足2个更好,3个就最好了1、公司业绩处于上升期,不断扩编2、有独立的数据部门/数据小组3、有专业数仓,能自己写sql提数
因为只有小公司才瞎胡咧咧,问什么“数据分析有没有用”。在大公司,数据就是工作的水和空气,是基本条件。数据部门是基础服务部门,只要公司持续发展,就会持续招人。进一个有数据团队的公司,能保证自己稳定积累2~3年能力,以后再去一线大厂或者去其他公司自己组建团队,都有底子了。后边的路就顺了。
▌ 问5:好像要求有点高!如果条件1不满足,下降期公司能去吗?!
答5:如果是“瘦死的骆驼比马大”型下降,是可以考虑的。
比如这两年很多传统企业都发展受阻,业绩下滑。但是这些传统企业依然在努力做线上渠道,在扩充数据团队,这种情况是可以去的。一来,可以学习一些基础知识,比如传统企业的渠道管理、商品管理,比所谓“新零售互联网”要成熟很多。二来,有机会锻炼一下能力。又不是干一辈子,积累一些经验就可以再考虑换了。至于有些公司,本身就不咋地,再发展不行,就别去填坑了……
▌ 问6:如果条件2不满足,可以考虑吗,比如挂在业务部门的数据分析师?
答6:去了肯定过得没那么舒服,但不代表要拒绝。
一个典型的不好拒绝的,就是某些大厂,会把数据分析挂在算法/产品部门下边。给算法开发打下手。很多人一看“大厂”+“算法”,立马心潮澎湃就过去了。结果去了发现:策略产品经理提需求,算法负责实现,数据分析就是每天无休无止的写sql拉各种数,做个ABtest要分500多个维度拆解差异。虽然钱还是有,但是加班强度和郁闷程度都是很高的。如果是一个小厂子,待遇一般,去了搞什么客服排班、新媒体数据分析之类不入主流的工作,那就直接拒掉吧,没啥损失,去了又学不到东西又没钱。
▌ 问7:如果条件3不满足,可以考虑吗,特别是有些新团队。
答7:只要岗位在IT部门,且IT部门不是散装团队,有一定规模(20+人头),都可以考虑。毕竟事情都有个从0到1的过程的。岗位在IT团队能确保自己不落单。最怕的是IT团队是草台班子,或者这个岗位压根就是业务部门招的,又没有专门的数仓,让你自己从各种平台捞数……估计每天烦都能烦死。
更糟糕的是,骑自行车的本事,开汽车时用不上。很多散装小团队以“能学东西”为名义忽悠人,可真到面试大公司的时候才发现根本没用,专业度才是第一位的。
▌ 问8:上边没看到讲传统企业与互联网企业的区别呀?关系大吗?
答8:其实传统企业,只要不是那种领域很窄的,比如装备制造业、化工等等,都可以考虑。
一来,在商品管理、店铺管理、外呼管理、地推团队管理上,一个历史悠久的传统企业积累的经验,远远不是这两年的新冒出来的“新零售”互联网公司能比的。可以积累一定经验。二来,互联网与传统的差异,在数据上主要体现在埋点+用户行为分析上。如果传统企业也有自建的电商渠道,也有做埋点,其实差异就没那么大了。特别是,这两年互联网在退潮,大厂裁员,小厂关门情况很多,不见得对所有人都是好赛道。所以还是看具体岗位+薪资,只要岗位薪资过得去,还是可以考虑的。
▌ 问9:那做数据分析的终点是啥?
答9:能在大厂混一个数据部门组长/总监就差不多了。
注意!数据分析岗不太适合创业。传统公司创业的都是销售,手里有客户;互联网公司创业的很多是知名的产品,因为和投资人熟,对整个开发过程熟悉。数据工作本质是个手艺活。
▌ 问10:那我不想干数据了,还能干啥?
答10:如果不想废弃数据技能,业务上和数据比较近的,都是策略类工作,比如用户运营、商品管理、策略产品,这些可以在补充专业知识后转过去。技术上直接干大数据开发就好了。
▌ 最后一问:为啥上边没给标准,比如从业1年年薪百万,从业5年创业30岁身价过亿?
答:这些本身就是忽悠人的玩意,想看薪资标准自己去BOSS直聘/拉勾网搜哈。
要特别强调的是:冷暖自知。生活不是考试,没有标准答案,薪酬也不是考试成绩,没必要相互攀比。就像很多人看不上外包工作,可如果你看到一个之前月薪5K的表哥,努力成为一名1.5w月薪的sql boy之后有多喜悦,你也会有另一番评价。有些人自己学历高、经验多,就“为何不食肉糜”的抨击别人不努力,不去卷大厂,这是非常错误的。不同人起点不同,能努力找到适合自己的方向才是最重要的。
文章来源于接地气的陈老师 ,作者接地气的陈老师
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15