京公网安备 11010802034615号
经营许可证编号:京B2-20210330
聚类分析是一种常用的无监督学习方法,旨在将样本数据划分为相似的群组或簇。在R中,有多种聚类分析方法可供选择,包括层次聚类和K均值聚类等。本文将介绍如何使用R进行聚类分析。
在进行聚类分析之前,需要先准备好要分析的数据集。数据通常以矩阵或数据框的形式呈现,其中每行代表一个样本,每列代表一个特征。在这里,我们将使用UCI Machine Learning Repository上的Iris数据集作为示例。该数据集包含150个样本,每个样本有4个特征:花萼长度、花萼宽度、花瓣长度和花瓣宽度。首先,我们需要从网络上下载数据集并导入到R中:
iris <- read.csv("https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data", header = FALSE)
colnames(iris) <- c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width", "Species")
层次聚类是一种将样本逐步分组的方法,可以形成一个树形结构,称为树状图。在R中,可以使用hclust函数来执行层次聚类分析。hclust函数需要一个距离矩阵或相似性矩阵作为输入,因此我们需要首先计算样本之间的距离或相似性矩阵。在这里,我们将使用欧几里得距离来度量样本之间的距离:
dist_mat <- dist(iris[, 1:4], method = "euclidean")
接下来,我们可以使用hclust函数对距离矩阵进行聚类分析:
hc_res <- hclust(dist_mat, method = "ward.D2")
其中,method = "ward.D2"表示使用Ward方法进行聚类分析。Ward方法尝试最小化群组内方差的增加量,因此通常能够产生更紧密的群组。执行完聚类分析后,我们可以使用plot函数来绘制树状图:
plot(hc_res)

从树状图中可以看出,Iris数据集可以被分成3个主要簇。我们还可以使用cutree函数将每个样本分配到不同的簇中:
cluster_labels <- cutree(hc_res, k = 3)
其中,k = 3表示我们期望将数据分为3个簇。可以通过以下方式查看每个样本所属的簇:
head(cluster_labels)
#> [1] 1 1 1 1 1 1
K均值聚类是一种迭代方法,旨在将样本分为k个不同的簇,使得每个簇内部的样本之间的距离最小化。在R中,可以使用kmeans函数来执行K均值聚类分析。kmeans函数需要指定要分成的簇数,并且通常需要多次运行以避免收敛于局部最小值。
kmeans_res <- kmeans(iris[, 1:4], centers = 3, nstart = 20)
其中,centers = 3表示我们期望将数据分为3个簇,nstart = 20表示我们希
望执行20次随机初始化来避免局部最小值。
K均值聚类分析的输出包括每个样本所属的簇标签和每个簇的中心点。我们可以通过以下方式查看分配到每个簇的样本数量:
table(kmeans_res$cluster)
#>
#> 1 2 3
#> 38 50 62
从结果可以看出,Iris数据集被成功地分成了3个主要簇,每个簇都有相似的特征值。
除了树状图之外,我们还可以使用其他方法来可视化聚类结果。例如,我们可以使用ggplot2包中的函数绘制散点图,并使用不同的颜色表示不同的簇:
library(ggplot2)
iris_clustered <- cbind(iris, cluster_labels)
ggplot(iris_clustered, aes(x = Sepal.Length, y = Petal.Width, color = factor(cluster_labels))) +
geom_point()

从散点图可以看出,不同簇的样本在花萼长度和花瓣宽度之间存在明显的差异。
聚类分析是一种有用的无监督学习方法,可以帮助我们发现数据中隐藏的结构。在R中,我们可以使用层次聚类和K均值聚类等多种方法进行聚类分析。在进行聚类分析之前,我们需要准备好要分析的数据集,并选择合适的聚类算法和参数。最后,我们可以通过树状图、散点图等方式来可视化聚类结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26