大数据时代DT+成为大趋势
大数据及其本质特征
大数据是指以服务于决策为目的,需要新型数据处理模式才能对其内容进行采集、存储、管理和分析的海量、高增长率和多样化的信息资本。
大数据具有如下本质特征:一是根本目的是服务于决策,大数据能够帮助各类组织和个人大幅度提升决策能力,做出更好的决策和判断。二是量度大,大数据通常是指100T以上的数据量,这难以依靠传统的计算手段有效计算,而必须依靠新的计算手段和数据挖掘工具。三是频率高,大数据是用户参与互动而产生的数据,根据用户的网络痕迹来及时地了解用户的相关数据,这种数据是按照天甚至小时来计算的高频数据。而传统的数据频率都很低,很多数据是按照月甚至按照年份来计算的。四是速度快,大数据是实时性的数据,能够实时反应。例如,在百度搜索框输入一个关键词,能够瞬间呈现,而传统的数据收集方式则是严重滞后的。五是维度丰富多样,大数据是全样本数据、多维度数据、非结构化数据,既包括普通的结构化数据,又包括视频和音频等非结构化数据。正是因为大数据的维度多样性,其也更为复杂。六是永远在线。在线是大数据的前提条件,从这个角度来说,大数据是永远在线的,能够随时被调用的。大数据通过分析各种网络终端上的用户痕迹,能够更好地分析用户的行为、情感、思想、爱好与需求,来更好地进行决策和分析。七是本质是信息资本。大数据是能够为政府和企业带来未来经济利益的信息资源,其本质是信息资产,而且随着大数据的应用越来越广,其价值会越来越大。因此,不应该仅仅把大数据看成成本,而应把其看成和土地、资本、人才等一样的新生产要素。
政府数据公开是大数据发展的保障
大数据的重要组成部分是政府数据,因此政府数据公开的程度和广度将在很大程度上决定着大数据的发展水平。目前,美国等西方发达国家大力推进数据开放运动,在数据公开程度上居于世界前列。2011年9月20日,美国、巴西、印度尼西亚、墨西哥、挪威、菲律宾、南非、英国等八个国家(G8)联合签署了《开放数据声明》,在纽约发起“开放政府联盟”(OGP),以向本国社会开放更多的信息。2013年6月,八国集团首脑签署了《开放数据宪章》,制定开放数据行动方案,并设定了开放数据宪章的五大原则:开放数据为默认;为激励创新发布数据;为改善治理发布数据;注重数量和质量;让所有人可用。尤其需要指出的是,其中最重要的一条就是“开放为默认,不开放为特例”的原则,这就约束政府部门尽最大可能地公开所有数据,而反观我国,由于政府数据开放的程度很低,各部门基于自身的利益,基本上采取的是“开放为特例,不开放为默认”的原则,这也导致形成一个个的“信息孤岛”。
2007年,国务院通过了《中华人民共和国政府信息公开条例》,国务院办公厅印发的《2015年政府信息公开工作要点》更加明确地强调推进行政权力清单、财政资金、公共服务、国有企业、环境保护等九大领域的信息公开工作。2015年8月19日,国务院总理李克强主持召开国务院常务会议,通过《关于促进大数据发展的行动纲要》。目前,我国的政府数据开放存在着四大挑战:一是开放与安全,在实践中,很多人以数据安全为由来反对数据开放,这是一种很片面的观点;二是人才和文化,我国的数据人才在量和质上都存在重大缺陷,而且也没有形成“数据文化”;三是政策标准不统一;四是政策法规不健全。
在政府数据开放方面,我国存在三大主要问题:一是我国尚未建立起全国统一的大数据平台,导致形成一个个的信息孤岛,影响了政府数据开放的成效;二是我国的数据污染很严重,很多原始数据存在夸大或瞒报现象;三是一些地方没有把大数据当成政府公共服务的重要部分,而当成盈利的资源。
大数据蕴藏着新哲学思想和优势
首先,大数据拓展了新的哲学思想。大数据既能处理“因果关系”又能处理“相关关系”,即不仅能够回答“为什么”又能回答“是什么”。在小数据时代,只能通过抽样调查的方式来回答“为什么”。而大数据则能通过全样本的方式来回答“是什么”,即发现相关关系,这能够帮助我们更好地认识和了解世界。例如,沃尔玛发现在尿布旁边放上啤酒能够提高啤酒的销量,就把尿布和啤酒混搭销售。毫无疑问,尿布和啤酒之间并无因果关系,而二者在一起就形成很好的相关关系。
其次,大数据分析具有显著优势。一是大数据能够实现分析的高度智能化,既能实现信息收集和分析的智能化,又能实现数据与用户需求的有效匹配。二是及时、迅速。大数据分析改变之前的市场调研和数据分析相对滞后的模式和方式,能够及时、迅速地进行分析。例如,传统的市场调研一般耗时几个月,而基于互联网的大数据调研则只需要几天就能得到调研结果。三是成本相对较低。由于可以大量使用技术手段,其成本相应较低。一般来说,传统的市场调研方式,每一份问卷都需要近百元,而互联网调研一份问卷只需要4元左右。
大数据实施的三大关键点
首先,数据的可获得度。目前在国内,大数据的发展严重受制于政府信息的公开性不够,很多数据难以获得,导致难以实现真正的大数据挖掘和分析,这就要求政府及时开放更多的数据,以提高数据的可获得度。
其次,进行科学的模型建构。模型的科学性直接决定着数据分析的质量,这就要求有高超的建模水平,当然数据量越多也有助于模型的合理构建。
第三,利用专家对观点进行提炼。为决策提供依据的基于数据挖掘的独到、高质量的观点,高度依赖于高质量的数据解释,这就体现了行业专家的价值。
在大数据时代,大数据已经成为整个社会的底层架构和标配,其上的一切都必须按照大数据的要求进行重构,大数据在解决大问题方面尤为有效,目前在语音搜索、智慧城市建设、互联网金融治理等方面取得了长足的进展,未来更多的领域都必将被大数据所革命和重构。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03