
R中的apply族函数
如果计算涉及到 一个单一的向量,而结果也是一个向量 , tapply函数 是一个可选项,不同于aggregate函数,它返回一个向量或数组,这使得其单个元素很容易被访问。
将组定义为矩阵的行或列,即操作目标为矩阵的每一列或行时, apply函数 时最佳选择。该函数通常会返回一个向量或数组,但根据行或列操作的结果维度不同,将返回一个列表。
将组定义为列表中的元素。 如果组已经形成列表元素,那么 sapply或lapply函数 比较适合,它们的区别是lapply返回一个列表,而sapply可将输出简化为向量或数组。有时可以结合使用split函数,将需要处理的数据创建为一个列表,然后再使用这两个函数。
如果所要计算函数的参数为一个矩阵或数组, 可以考虑使用 mapply函数 ,该函数非常的灵活和简单,其返回的结果一般是列表形式。
先来看一下tapply()、apply()、lapply()、sapply()和mapply()函数的 语法规则:
tapply(X, INDEX, FUN = NULL, ..., simplify = TRUE)
apply(X, MARGIN, FUN, ...)
lapply(X, FUN, ...)
sapply(X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE)
mapply(FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE,
USE.NAMES = TRUE)
根据不同的函数,输入数据X可能是向量、数组、矩阵或数据框;INDEX一般为类别变量;MARGIN指定矩阵的维度,1表示矩阵的行,2表示矩阵的列;FUN为参与运算的函数,可以是R自带的函数也可以是自己编写的函数;...为函数FUN指定的参数,紧跟在函数的后面。
接下来看一下各个函数的应用情况
为了处理基于一个或多个分组变量的单个向量,可以使用tapply函数, 该函数返回一个数组,其维数与分组向量的维数相同 。
注意,该函数的输入数据必须是向量,且分析向量与分组向量的长度必须一致
如果想分析iris数据集中Sepal.Length在各个花种中的最大值,可以通过tapply函数实现,这里的Sepal.Length和Species为两个向量,且各自的长度均相等。
如果想对某个变量(向量)进行多变量的分组分析时,也可以采用tapply函数。
首先构造一个数据框:
接下来想对z变量做分组统计,分组变量为x和y
这里的NA表示x和y的分组中没有对应的z值。
当数据具备 数组 的特性,可通过 apply函数对数据的每个维度进行运算 ,该函数需要 三个参数 :需要计算的 数组、运算维度的索引号和使用的函数。
标准化一个矩阵:这里可以直接给参数FUN为scale
当然,如果想统计各个列的均值,为比较显式循环和apply的隐式循环,程序如下,就可以比较出两种方式的效率:
\
结果显式,通过apply计算矩阵列的均值速度是显式循环的50倍。这说明在R中使用循环的话尽量使用到隐式的向量化计算,否则计算效率非常差。
再来看一个如何使用自编函数应用到apply中:这里显式了前7列的统计量值。
lapply()函数和sapply()函数把一个列表或向量作为其第一个参数,再把需要应用到每个列表元素的函数作为它的第二个参数。 其实它也应用到了循环,是一种隐式的循环,对列表的每一个元素做同样的函数计算。
应用:查看字符向量中每一个元素所包含的单词个数
使用sapply函数的另一个重要问题涉及到数据框。当数据框被视为列表时,数据框的每一列看着独立的列表元素。
查看数据集iris和ChickWeight各个字段的模式和类
通过以上的应用,可以提取满足特定条件的数据框的列
接下来使用自编函数加入到sapply函数中,实现循环。该自编函数的目的是计算出1000个100*5的矩阵中最大相关系数的均值。 这里很关键的一点是给自编函数传一个虚拟参数i用来循环。
最后再来看一下mapply函数的应用:该函数的第一个参数为指定的函数,第二个参数为指定函数的参数。如果根据某种正则表达式将一个字符向量的对应特征取出来,例如取出'qaws1few4g'中的'1f'和'4g'
最后总结一下:
tapply()的被分析对象必须且只能是向量
apply()的被分析对象必须且只能是矩阵或数组
sapply()的被分析对象必须且只能是向量或列表
lapply()的被分析对象必须且只能是向量或列表
mapply()的被分析对象必须是函数
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26