R中的apply族函数
如果计算涉及到 一个单一的向量,而结果也是一个向量 , tapply函数 是一个可选项,不同于aggregate函数,它返回一个向量或数组,这使得其单个元素很容易被访问。
将组定义为矩阵的行或列,即操作目标为矩阵的每一列或行时, apply函数 时最佳选择。该函数通常会返回一个向量或数组,但根据行或列操作的结果维度不同,将返回一个列表。
将组定义为列表中的元素。 如果组已经形成列表元素,那么 sapply或lapply函数 比较适合,它们的区别是lapply返回一个列表,而sapply可将输出简化为向量或数组。有时可以结合使用split函数,将需要处理的数据创建为一个列表,然后再使用这两个函数。
如果所要计算函数的参数为一个矩阵或数组, 可以考虑使用 mapply函数 ,该函数非常的灵活和简单,其返回的结果一般是列表形式。
先来看一下tapply()、apply()、lapply()、sapply()和mapply()函数的 语法规则:
tapply(X, INDEX, FUN = NULL, ..., simplify = TRUE)
apply(X, MARGIN, FUN, ...)
lapply(X, FUN, ...)
sapply(X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE)
mapply(FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE,
USE.NAMES = TRUE)
根据不同的函数,输入数据X可能是向量、数组、矩阵或数据框;INDEX一般为类别变量;MARGIN指定矩阵的维度,1表示矩阵的行,2表示矩阵的列;FUN为参与运算的函数,可以是R自带的函数也可以是自己编写的函数;...为函数FUN指定的参数,紧跟在函数的后面。
接下来看一下各个函数的应用情况
为了处理基于一个或多个分组变量的单个向量,可以使用tapply函数, 该函数返回一个数组,其维数与分组向量的维数相同 。
注意,该函数的输入数据必须是向量,且分析向量与分组向量的长度必须一致
如果想分析iris数据集中Sepal.Length在各个花种中的最大值,可以通过tapply函数实现,这里的Sepal.Length和Species为两个向量,且各自的长度均相等。
如果想对某个变量(向量)进行多变量的分组分析时,也可以采用tapply函数。
首先构造一个数据框:
接下来想对z变量做分组统计,分组变量为x和y
这里的NA表示x和y的分组中没有对应的z值。
当数据具备 数组 的特性,可通过 apply函数对数据的每个维度进行运算 ,该函数需要 三个参数 :需要计算的 数组、运算维度的索引号和使用的函数。
标准化一个矩阵:这里可以直接给参数FUN为scale
当然,如果想统计各个列的均值,为比较显式循环和apply的隐式循环,程序如下,就可以比较出两种方式的效率:
\
结果显式,通过apply计算矩阵列的均值速度是显式循环的50倍。这说明在R中使用循环的话尽量使用到隐式的向量化计算,否则计算效率非常差。
再来看一个如何使用自编函数应用到apply中:这里显式了前7列的统计量值。
lapply()函数和sapply()函数把一个列表或向量作为其第一个参数,再把需要应用到每个列表元素的函数作为它的第二个参数。 其实它也应用到了循环,是一种隐式的循环,对列表的每一个元素做同样的函数计算。
应用:查看字符向量中每一个元素所包含的单词个数
使用sapply函数的另一个重要问题涉及到数据框。当数据框被视为列表时,数据框的每一列看着独立的列表元素。
查看数据集iris和ChickWeight各个字段的模式和类
通过以上的应用,可以提取满足特定条件的数据框的列
接下来使用自编函数加入到sapply函数中,实现循环。该自编函数的目的是计算出1000个100*5的矩阵中最大相关系数的均值。 这里很关键的一点是给自编函数传一个虚拟参数i用来循环。
最后再来看一下mapply函数的应用:该函数的第一个参数为指定的函数,第二个参数为指定函数的参数。如果根据某种正则表达式将一个字符向量的对应特征取出来,例如取出'qaws1few4g'中的'1f'和'4g'
最后总结一下:
tapply()的被分析对象必须且只能是向量
apply()的被分析对象必须且只能是矩阵或数组
sapply()的被分析对象必须且只能是向量或列表
lapply()的被分析对象必须且只能是向量或列表
mapply()的被分析对象必须是函数
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03