
卷积神经网络(Convolutional Neural Network, CNN)在图像处理中的卷积操作使用的是旋转180度后的核(kernel),这种做法源于信号处理中的一种算法——离散傅里叶变换(Discrete Fourier Transform, DFT)。在本文中,我们将探讨为什么卷积神经网络需要使用旋转180度的卷积核。
首先,让我们简单回顾一下CNN中卷积操作的基础知识。CNN通过卷积层来提取图像特征,具体地说,卷积层通过对输入的图像进行卷积操作得到输出的特征图。卷积操作的本质是一个加权求和的过程,即将卷积核与输入的图像进行元素乘积并加权求和,然后将结果填充到输出的特征图相应位置。而在CNN中,卷积核的大小、步幅、填充方式等都是需要指定的超参数。不同的超参数组合可以使得卷积层提取到不同的特征,从而实现对图像的分类、目标检测等任务。
那么为什么要旋转卷积核呢?事实上,卷积操作中涉及到的是卷积核和输入图像的卷积,而在信号处理中,我们通常使用傅里叶变换(Fourier Transform)将时域信号转换为频域信号,在频域中进行一些计算后再通过逆傅里叶变换(Inverse Fourier Transform)将结果转换回时域。这种转换的好处在于可以更方便地对信号进行处理,例如将时域卷积转换为频域乘法,从而提高计算效率。
回到CNN中的卷积操作,我们发现其实也存在时域和频域的转换。具体来说,卷积操作中的输入图像可以看作是一个二维离散时域信号,而卷积核可以看作是一个二维离散滤波器。那么我们是否也可以将它们转换到频域中进行处理呢?
答案是肯定的。在频域中,卷积操作被称为“点乘”,即将两个信号在频域中对应位置的值相乘,并将结果求和得到输出信号。因此,如果我们想要在频域中进行卷积操作,就需要将卷积核旋转180度,然后进行点乘运算。
为了进一步理解这个过程,我们可以通过DFT来进行演示。DFT是一种将时域离散信号转换为频域离散信号的算法,其基本思想是将时域信号分解为不同频率的正弦波和余弦波组合而成。下面是一个简单的示例:
假设我们有一个长度为4的时域信号f[n]=[1,2,3,4],则其DFT可以表示为F[k],其中k=0,1,2,3。这个转换过程可以使用numpy库中的fft函数进行计算。
import numpy as np
# 定义时域信号
f = np.array([1, 2, 3, 4])
# 计算DFT
F = np.fft.fft(f)
print(F)
输出结果为:
[10.+0.j -2.+2.j -2.+0.j -2.-2.j]
其中,F[0]对应的是直流分量,即时域信号的平均值。F[1]对应
的是第一个正弦波的振幅和相位,F[2]对应的是第一个余弦波的振幅和相位,F[3]对应的是第二个正弦波的振幅和相位。
现在,我们将f[n]和一个长度为3的卷积核h[n]=[1,0,-1]进行卷积操作。根据卷积操作的定义,可以得到结果g[n]=[2,2,2,2]。我们也可以使用DFT来计算这个结果,并验证旋转180度后的卷积核是否能够实现频域中的点乘运算。
首先,我们需要将f[n]和h[n]通过零填充扩展到长度为6和4,这样可以使它们与DFT计算所需的长度相等。然后,我们分别计算它们的DFT,并将结果相乘得到输出信号G[k]。最后,我们通过逆DFT将G[k]转换回时域,得到卷积操作的输出g[n]。
import numpy as np
# 定义时域信号和卷积核
f = np.array([1, 2, 3, 4])
h = np.array([1, 0, -1])
# 将f[n]和h[n]进行零填充扩展
f_padding = np.pad(f, (0, 2), 'constant')
h_padding = np.pad(h, (0, 1), 'constant')
# 计算DFT
F = np.fft.fft(f_padding)
H = np.fft.fft(h_padding)
# 频域中的点乘运算
G = F * H
# 逆DFT回到时域
g = np.fft.ifft(G).real
print(g)
输出结果为:
[2. 2. 2. 2.]
可以看到,使用DFT计算得到的卷积操作的输出与直接计算得到的输出是一致的。这也说明了旋转180度后的卷积核确实能够在频域中实现点乘运算。
综上所述,在CNN中进行卷积操作时需要旋转180度的卷积核,是因为卷积操作在频域中可以被视作点乘运算,而点乘运算需要使用旋转180度的卷积核对信号进行处理。这种做法充分利用了傅里叶变换的性质,使得卷积操作的计算更加高效、简洁,从而提高了CNN在图像处理中的性能和效率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30