京公网安备 11010802034615号
经营许可证编号:京B2-20210330
决策树是一种常用的机器学习算法,它可以对数据进行分类和预测。在决策树中,特征(或属性)重要性是指每个特征对模型准确性的贡献程度。因此,了解如何计算特征重要性是非常有用的,可以帮助我们选择最相关的特征,进而提高模型的性能。
本文将介绍三种计算特征重要性的方法:基于信息增益、基于基尼不纯度和基于平均减少不纯度。这些方法都可以用来计算特征重要性,并且在实践中都取得了很好的效果。
信息增益是一种用来评估一个特征对决策树分类能力的重要性的指标。它的定义是:特征A对样本集D的信息增益(Gain(D, A))等于样本集D的经验熵(H(D))与特征A条件下的经验熵(H(D|A))之差,即:
Gain(D, A) = H(D) - H(D|A)
其中,经验熵(H(D))衡量了样本集D的不确定性,经验熵越大,样本集的不确定性就越高;特征A条件下的经验熵(H(D|A))衡量的是在特征A给定的情况下,样本集D的不确定性。如果特征A对分类任务有帮助,则H(D|A)会比H(D)小,因此信息增益越大,特征对分类能力的贡献就越大。
在计算信息增益时,我们需要先计算经验熵和条件经验熵。然后,通过计算信息增益来确定每个特征的重要性,从而选择最相关的特征。
基尼不纯度是另一种评估特征重要性的方法。它衡量的是从样本中随机选择两个样本,其类别不一致的概率。这个概率越低,说明样本的纯度越高,也就是说该特征对分类任务的贡献越大。
具体来说,假设样本集合D中第k类样本所占的比例为pk,则D的基尼指数定义为:
Gini(D) = 1 - ∑(pk)^2
对于样本集合D来说,假设使用特征A对其进行划分,得到了m个子集Di,其中第i个子集的样本数为Di,并且属于第k类的样本在Di中所占的比例为pki,则特征A的基尼指数定义为:
Gini(D, A) = ∑(Di / D) × (1 - ∑(pki)^2)
特征A的重要性可以通过计算基尼指数的减少量来确定。具体来说,我们可以计算使用特征A进行划分前后的基尼指数,然后计算两者之差,即:
ΔGini(D, A) = Gini(D) - Gini(D, A)
如果ΔGini越大,说明特征A对分类任务的贡献越大,因此特征A的重要性就越高。
平均减少不纯度(Mean Decrease Impurity,MDI)是一种计算特征重要性的方法,它对应的是决策树算法中的 CART
算法。该方法通过计算每个特征在决策树中被用作分裂标准的次数和该特征分裂所带来的平均减少不纯度,来评估特征的重要程度。
具体来说,对于某个特征A,我们可以计算它在所有节点上的分裂次数和每次分裂所带来的平均减少不纯度(Impurity Decrease,ID)。然后将每个节点的ID加权求和即可得到特征A的MDI。
CART算法使用的是基尼不纯度来评估节点的不纯度,因此其计算方法与基于基尼不纯度的特征重要性计算方法类似。
总结
本文介绍了三种常用的特征重要性计算方法:基于信息增益、基于基尼不纯度和基于平均减少不纯度。这些方法都可以用来计算特征的重要性,并且在实践中都取得了很好的效果。选择哪种方法取决于具体情况和数据集的特点。在实际应用中,我们可以结合多种方法来评估特征的重要性,以获得更全面的结果。
相信读完上文,你对算法已经有了全面认识。若想进一步探索机器学习的前沿知识,强烈推荐机器学习之半监督学习课程。
学习入口:https://edu.cda.cn/goods/show/3826?targetId=6730&preview=0
涵盖核心算法,结合多领域实战案例,还会持续更新,无论是新手入门还是高手进阶都很合适。赶紧点击链接开启学习吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05