
决策树是一种常用的机器学习算法,它可以对数据进行分类和预测。在决策树中,特征(或属性)重要性是指每个特征对模型准确性的贡献程度。因此,了解如何计算特征重要性是非常有用的,可以帮助我们选择最相关的特征,进而提高模型的性能。
本文将介绍三种计算特征重要性的方法:基于信息增益、基于基尼不纯度和基于平均减少不纯度。这些方法都可以用来计算特征重要性,并且在实践中都取得了很好的效果。
信息增益是一种用来评估一个特征对决策树分类能力的重要性的指标。它的定义是:特征A对样本集D的信息增益(Gain(D, A))等于样本集D的经验熵(H(D))与特征A条件下的经验熵(H(D|A))之差,即:
Gain(D, A) = H(D) - H(D|A)
其中,经验熵(H(D))衡量了样本集D的不确定性,经验熵越大,样本集的不确定性就越高;特征A条件下的经验熵(H(D|A))衡量的是在特征A给定的情况下,样本集D的不确定性。如果特征A对分类任务有帮助,则H(D|A)会比H(D)小,因此信息增益越大,特征对分类能力的贡献就越大。
在计算信息增益时,我们需要先计算经验熵和条件经验熵。然后,通过计算信息增益来确定每个特征的重要性,从而选择最相关的特征。
基尼不纯度是另一种评估特征重要性的方法。它衡量的是从样本中随机选择两个样本,其类别不一致的概率。这个概率越低,说明样本的纯度越高,也就是说该特征对分类任务的贡献越大。
具体来说,假设样本集合D中第k类样本所占的比例为pk,则D的基尼指数定义为:
Gini(D) = 1 - ∑(pk)^2
对于样本集合D来说,假设使用特征A对其进行划分,得到了m个子集Di,其中第i个子集的样本数为Di,并且属于第k类的样本在Di中所占的比例为pki,则特征A的基尼指数定义为:
Gini(D, A) = ∑(Di / D) × (1 - ∑(pki)^2)
特征A的重要性可以通过计算基尼指数的减少量来确定。具体来说,我们可以计算使用特征A进行划分前后的基尼指数,然后计算两者之差,即:
ΔGini(D, A) = Gini(D) - Gini(D, A)
如果ΔGini越大,说明特征A对分类任务的贡献越大,因此特征A的重要性就越高。
平均减少不纯度(Mean Decrease Impurity,MDI)是一种计算特征重要性的方法,它对应的是决策树算法中的 CART
算法。该方法通过计算每个特征在决策树中被用作分裂标准的次数和该特征分裂所带来的平均减少不纯度,来评估特征的重要程度。
具体来说,对于某个特征A,我们可以计算它在所有节点上的分裂次数和每次分裂所带来的平均减少不纯度(Impurity Decrease,ID)。然后将每个节点的ID加权求和即可得到特征A的MDI。
CART算法使用的是基尼不纯度来评估节点的不纯度,因此其计算方法与基于基尼不纯度的特征重要性计算方法类似。
总结
本文介绍了三种常用的特征重要性计算方法:基于信息增益、基于基尼不纯度和基于平均减少不纯度。这些方法都可以用来计算特征的重要性,并且在实践中都取得了很好的效果。选择哪种方法取决于具体情况和数据集的特点。在实际应用中,我们可以结合多种方法来评估特征的重要性,以获得更全面的结果。
相信读完上文,你对算法已经有了全面认识。若想进一步探索机器学习的前沿知识,强烈推荐机器学习之半监督学习课程。
学习入口:https://edu.cda.cn/goods/show/3826?targetId=6730&preview=0
涵盖核心算法,结合多领域实战案例,还会持续更新,无论是新手入门还是高手进阶都很合适。赶紧点击链接开启学习吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30