京公网安备 11010802034615号
经营许可证编号:京B2-20210330
PyTorch是一种流行的深度学习框架,它提供了许多方便的工具来处理数据集并构建模型。在深度学习中,我们通常需要对训练数据进行交叉验证,以评估模型的性能和确定超参数的最佳值。本文将介绍如何使用PyTorch实现10折交叉验证。
首先,我们需要加载数据集。假设我们有一个包含1000个样本的训练集,每个样本有10个特征和一个标签。我们可以使用PyTorch的Dataset和DataLoader类来加载和处理数据集。下面是一个示例代码片段:
import torch
from torch.utils.data import Dataset, DataLoader
class MyDataset(Dataset):
def __init__(self, data):
self.data = data
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
x = torch.tensor(self.data[idx][:10], dtype=torch.float32)
y = torch.tensor(self.data[idx][10], dtype=torch.long)
return x, y
data = [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 0],
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 1],
...
[1000, 999, 998, 997, 996, 995, 994, 993, 992, 991, 9]]
dataset = MyDataset(data)
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)
在这里,我们定义了一个名为MyDataset的自定义数据集类,它从数据列表中返回一个样本。每个样本分别由10个特征和1个标签组成。然后,我们使用Dataset和DataLoader类将数据集加载到内存中,并将其分成大小为32的批次。我们也可以选择在每个时期迭代时随机打乱数据集(shuffle=True)。
接下来,我们需要将训练集划分为10个不同的子集。我们可以使用Scikit-learn的StratifiedKFold类来将数据集划分为k个连续的折叠,并确保每个折叠中的类别比例与整个数据集相同。下面是一个示例代码片段:
from sklearn.model_selection import StratifiedKFold
kfold = StratifiedKFold(n_splits=10)
X = torch.stack([x for x, y in dataset])
y = torch.tensor([y for x, y in dataset])
for fold, (train_index, val_index) in enumerate(kfold.split(X, y)):
train_dataset = torch.utils.data.Subset(dataset, train_index)
val_dataset = torch.utils.data.Subset(dataset, val_index)
train_dataloader = DataLoader(train_dataset, batch_size=32, shuffle=True)
val_dataloader = DataLoader(val_dataset, batch_size=32, shuffle=False)
# Train and evaluate model on this fold
# ...
在这里,我们使用StratifiedKFold类将数据集划分为10个连续的折叠。然后,我们使用Subset类从原始数据集中选择训练集和验证集。最后,我们使用DataLoader类将每个子集分成批次,并分别对其进行训练和评估。
在每个折叠上训练和评估模型时,我们需要编写适当的代码。以下是一个简单的示例模型和训练代码:
import torch.nn as nn
import torch.optim as optim
class MyModel(nn.Module):
def __init__(self):
super(MyModel, self).__init__()
self.fc1 = nn.Linear(10, 64)
self.fc2 = nn.Linear(64, 2)
def forward(self, x):
x = self.fc1(x)
x = nn.functional.relu(x) x = self.fc2(x) return x
model = MyModel() criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(), lr=0.001)
for epoch in range(10): for i, (inputs, labels) in enumerate(train_dataloader): optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# Evaluate on validation set
with torch.no_grad():
total_correct = 0
total_samples = 0
for inputs, labels in val_dataloader:
outputs = model(inputs)
_, predicted = torch.max(outputs, 1)
total_correct += (predicted == labels).sum().item()
total_samples += labels.size(0)
accuracy = total_correct / total_samples
print(f"Fold {fold + 1}, Epoch {epoch + 1}: Validation accuracy={accuracy}")
在这里,我们定义了一个名为MyModel的简单模型,并使用Adam优化器和交叉熵损失函数进行训练。对于每个时期和每个批次,我们计算输出、损失和梯度,并更新模型参数。然后,我们使用no_grad()上下文管理器在验证集上进行评估,并计算准确性。
4. 汇总结果
最后,我们需要将10个折叠的结果合并以获得最终结果。可以使用numpy来跟踪每个折叠的测试损失和准确性,并计算平均值和标准差。以下是一个示例代码片段:
```python
import numpy as np
test_losses = []
test_accuracies = []
for fold, (train_index, test_index) in enumerate(kfold.split(X, y)):
test_dataset = torch.utils.data.Subset(dataset, test_index)
test_dataloader = DataLoader(test_dataset, batch_size=32, shuffle=False)
# Evaluate on test set
with torch.no_grad():
total_correct = 0
total_loss = 0
total_samples = 0
for inputs, labels in test_dataloader:
outputs = model(inputs)
loss = criterion(outputs, labels)
_, predicted = torch.max(outputs, 1)
total_correct += (predicted == labels).sum().item()
total_loss += loss.item() * labels.size(0)
total_samples += labels.size(0)
loss = total_loss / total_samples
accuracy = total_correct / total_samples
test_losses.append(loss)
test_accuracies.append(accuracy)
mean_test_loss = np.mean(test_losses)
std_test_loss = np.std(test_losses)
mean_test_accuracy = np.mean(test_accuracies)
std_test_accuracy = np.std(test_accuracies)
print(f"Final results: Test loss={mean_test_loss} ± {std_test_loss}, Test accuracy={mean_test_accuracy} ± {std_test_accuracy}")
在这里,我们使用Subset类创建测试集,并在每个折叠上评估模型。然后,我们使用numpy计算测试损失和准确性的平均值和标准差,并将它们打印出来。
总之,使用PyTorch实现10折交叉验证相对简单,只需使用Dataset、DataLoader、StratifiedKFold和Subset类即可。重点是编写适当的模型和训练代码,并汇总所有10个折叠的结果。这种方法可以帮助我们更好地评估模型的性能并确定超参数的最佳值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29