京公网安备 11010802034615号
经营许可证编号:京B2-20210330
01、什么是aha 时刻
Aha时刻也叫惊喜时刻,是用户第一次认识到产品价值时,脱口而出“啊哈,原来这个产品可以帮我做这个啊。”简单来说就是用户第一次使用时候的惊喜体验。
Aha时刻主要发生在用户激活阶段,它是用户激活的关键。当用户被吸引来,并不是所有都会转化成活跃用户,但如果用户获得Aha时刻,即从产品中发现了价值,就会顺利转化成活跃用户,而且较容易转化成粘性较高的忠诚用户。
Aha时刻也并不是虚无缥缈的,他有一些具体的规律:清晰、具体、可量化。总的来说,他可以用一句话来描述:(谁)在(多长时间内)完成(多少次)(什么行为)?
以下列举出几个代表性APP的用户Aha时刻:
支付宝,7天内稳定使用支付宝3个以上的功能。
Faceu激萌,一天利用滤镜完成1张照片的美化。
Airbnb,6个月时间完成首次订单,并且有4星以上评价
02、aha 时刻的价值
单个用户在产品中的生命周期包含四个阶段,拉新 -> 激活 -> 留存 -> 流失, 由于现在拉新的成本越来越大, 所以我们希望的是拉来一个用户, 他们都能够尽可能的留下来, 所以拉承一体化的打法非常重要。
不当当是把用户从渠道利用采买的方法拉过来, 同时要做好用户来到我们app 上的承接, 那么怎么做做承接呢, 就需要针对用户进行相对应的aha 时刻的分析, 去发现留存的aha时刻
当我们找到用户的aha 时刻, 我们就可以针对性的引导用户去让他们达到他们的aha 时刻, 从而提高相应的留存
比如我们玩抖音的时候, 通过数据分析发现 7天内 用滤镜拍了 三个视频的用户的留存率会大大提高, 那么作为产品经理就可以去引导用户多用滤镜去拍视频, 同时对于滤镜本身的功能我们也可以相对应的进行优化
03、如何挖掘aha 时刻
那么我们如何去挖掘具体一款app 他们的aha moment 呢, 我们以留存为例子, 聊聊怎么利用数据分析去挖掘 用户留存的 aha moment。
1. 特征行为提取
拿某直播app 作为例子, 与留存的相关的行为可以分为 登录行为, 观看行为, 弹幕行为, 付费行为, 然后在每一个大的行为分类进行小的指标的刻画。
比如去描述登录的行为我们就可以用 30天登录天数, 7天登录天数, 还可以用比率型指标, 像最近30天的登录天数和过去30天的登录的天数的比值, 这个反应了用户活跃度的变化
2. 相关性分析
我们以y=1 表示用户留存, 0 表示用户不留存(流失),这样每一个用户就可以用0 和1 表示他留不留存下来
同时我们把用户的每一个行为特征都用具体的数字去量化出来, 比如用户的观看行为, 我们就可以用30天每天的平均观看时长来表示, 观看时长越长可能就代表用户对直播的app 越感兴趣,
同样的其他的数据, 比如发弹幕等等也是从其他维度去刻画用户的行为特征, 那么我们就可以得到比如用户 a, 30天观看天数XX天, 日均观看时长xx 分钟, 是否留存, 这样很多行的数据.
每一个用户一行, 然后我们就可以用之前的讲过的相关性分析的方法(_相关性分析法请见数据分析方法和思维—相关性分析法 ),去挖掘哪些行为和留存相关, 因为挖掘用户aha moment 的前提是要保证这些行为是跟我们研究的留存是有关系的。
留存相关最大的四大因素:
•30天或者7天登录天数(cor: 0.66)
•30天观看品类个数(cor: 0.44)
•30天观看主播数 (cor: 0.37)
•30天日均观看时长(cor: 0.26)
这里的cor 代表每一个行为特征和留存的相关性大小, cor 的值越大代表相关性越大。
3. aha moment 的计算
发现了影响留存了原因以后, 我们就要寻找这些行为是达到一个怎么样的值以后, 会大大影响留存的概率, 所以我们计算了30天登录天数, 7天登录天数, 月日均观看时长, 30天观看主播数, 30天观看品类数和留存的关系 下面是画出来的图
拿30天登录天数作为例子, 横轴就是 30天内不同登录天数, 纵轴就是留存率, 当横轴为7的时候, 留存率趋于稳定, 这时候就达到较稳定的状态也被称作 aha moment.
我们可以发现几个神奇的aha moment
月登录4天
周登录三天
月观看7个主播数
月观看4个品类数
月日均观看时长4分钟
这里的aha moment 说明用户在一个月登录4天, 一周登录三天, 月观看7个主播数, 月观看4个品类数, 月日均观看时长4分钟, 会大大提高用户的留存率
4. 业务价值
当我们找到用户的aha moment 的时候, 我们就要跟产品或者运营一起讨论沟通, 如何通过现在端内一些产品的功能的优化提高用户的登录天数, 观看主播数等等。
比如登录天数, 我们就可以利用比如登录签到领取礼包的方式诱发用户去登录, 让用户达到具体的aha moment 的数字, 比如一周引导用户登录3天就可以领取一个大奖
比如观看的主播数, 我们就可以利用比如用户在观看直播间的时候推荐一些相关的主播, 这些主播可能是用户喜欢的同种类型的主播或者根据用户的兴趣标签选出来的可能喜欢的主播
因为所有的策略 要围绕 用户+ 需求+ 场景去设计的, 用户在观看直播间的时候, 这是一种场景, 在这个场景下用户是有一定需求是可以给我推我可能喜欢的主播
这样产品的承接形态也比较自然
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22