京公网安备 11010802034615号
经营许可证编号:京B2-20210330
1. 模型介绍
1898 年,美国有一个叫 Elmo Lewis 的人,提出了 漏斗模型的概念,后来被总结为 AIDA模型,也称为「 爱达」公式,首字母分别代表:
(1)注意 Attention
(2)兴趣 Interest
(3)欲望 Desire
(4)行动 Action
从吸引客户的注意,到引起客户的兴趣,再到产生拥有的欲望,最后形成购买的行动,每个环节都会有客户流失,越靠后的环节,客户数量往往就越少,画出来的图形,就像一个漏斗。
2. 应用举例
从销售漏斗图的形状,我们就能比较直观地看到每个环节的转化情况。通过横向或纵向的对比,发现业务中可能存在的问题,然后进一步分析原因,从而有针对性地提出解决问题的建议。
一个好的模型,可以促进沟通和行动,从而产生良性循环的好结果。
你可以根据自身业务的实际情况,细分为更多的环节。
下面是用 Python 绘制销售漏斗图的代码:
# 导入库
importpyecharts.options asopts
frompyecharts.charts importFunnel
# 定义数据
x_data = [ ‘目标客户’, ‘意向客户’, ‘订购客户’]
y_data = [ 100, 80, 20]
data = [[x_data[i], y_data[i]] fori inrange(len(x_data))]
# 画漏斗图
c = (
Funnel(init_opts=opts.InitOpts(width= “1000px”, height= “600px”))
.add(
# 系列名称
series_name= “”,
# 系列数据项
data_pair=data,
# 数据图形间距
gap= 2,
# 标签配置项
label_opts=opts.LabelOpts(is_show= True, position= “inside”, font_size= 18),
# 图元样式配置项
itemstyle_opts=opts.ItemStyleOpts(color= ‘#00589F’, border_width= 1),
)
.set_global_opts(
# 设置标题
title_opts=opts.TitleOpts(title= “销售漏斗模型”, pos_left= ‘center’,
title_textstyle_opts=opts.TextStyleOpts(font_size= 26)),
# 隐藏图例
legend_opts=opts.LegendOpts(is_show= False)
)
.render( “销售漏斗模型.html”)
)
3. 分析思考
在应用分析思维模型的时候,我们不要停留在问题的表面,而要透过现象看本质,思考模型背后的逻辑。
(1)过程重于结果
结果是由过程产生的,如果每个过程都做好了,那么结果通常不会太差。
(2)预防重于纠错
在问题发生之前,提前预测到可能出现的问题,并采取相应的预防措施,这比问题发生之后再进行纠错更加重要。
有一个「扁鹊三兄弟」的故事,据说扁鹊的大哥医术最高明,因为他能预防疾病的发生。
(3)该说的要说到
让过程变得制度化、规范化、程序化。
如果不能实行法治,那么过程就会变得随意。
(4)说到的要做到
凡是制度化的内容,都必须严格执行。
如果有制度却不执行,那么还不如没有制度。
(5)做到的要见到
凡是已经发生的过程,都要留下记录。
如果没有记录,那么就不利于管理决策。
(6)让流程标准化
在深入细致研究的基础上,借鉴优秀的经验,制定标准化的流程。
如果没有标准化的流程,那么就难以沉淀成功的经验。
小结
销售漏斗模型,是科学反映销售效率的一个模型,本质上是对销售过程的细化管理,可以帮助我们把流程标准化并沉淀下来。
最后,提醒一下: 任何一个分析思维模型,都不可能解决所有的问题。我们应该根据实际情况,把更多的时间和精力,用来灵活地选择和应用多种分析思维模型,从而做出更加科学的决策。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27