很多人掌握了很多数据分析工具和技能,依然做不好数据分析。面对具体的业务问题,我们还是容易两眼一抹黑,单单会工具和技能是不够的,还必须拥有数据分析思维。
数据思维决定了你如何思考问题,如何搭配这些分析方法,如何得出结论,如何确定问题。
那么究竟什么是分析思维呢?我认为有以下几个方面。
数据分析师第一个要训练的思维方式便是:只说事实,不说观点。
事实和观点这两个名词看起来区别很大。但实际上在生活中我们经常会将两者混淆。
比如说你的同事告诉你:最近的转化率大幅下降。这句话到底是事实还是观点呢?很显然这句话是观点。究竟下降多少算大幅下降?也许你认为的大幅下降在我看来变化并不大。
那么如果他说:转化率下降了。
这句话是事实还是观点呢?这句话看起来已经非常像事实了,但是实际上它依然属于观点。
有这样一种情况,转化率在短期内它看起来是下降的,但是你站在宏观的层面上,以月为单位甚至以年为单位,它是它是上涨的,那么你究竟说他是上涨还是下跌呢
那么什么是事实?
这句话就是事实,这句话不同的人都能理解,不会出现歧义。
只有分清楚观点和事实才有继续分析的可能性。因为观点的沟通会出现误差,而事实则不会。如果我们用观点进行沟通,自然会出现大量的误解。
但是单纯只有数据,对业务问题的分析没有什么帮助,毕竟我们得知道这个数据到底带来了哪些业务信息,所以最后事实还是要归纳成“观点”。
想要解读出观点,我们需要先找到一个标准。
标准怎么找?
然后我们通过数据和这些标准进行对比,得出一个观点。
比如我们可以分析每周的情况,看历史上是否存在这一的趋势,平均下跌是多少?如果历史上每周三都会下跌,平均下跌7%,那么我们就可以认为目前数据比较正常,没有问题。
这样得出的结论全都是客观的,如果你不找标准,而用主观判断数据的好坏,那么不同部门的人会沟(shuai)通(guo)很久。
人们总是习惯于通过自己的现存经验和知识去判断未知事物,这种预设立场的思维在原始人的时代很有价值,其优势在于:不浪费宝贵的能量,快速决断,避免因为低效决断而错失机会
在数据分析的场景下,我们需要尽可能地找出真实原因。此时这种预设立场的决断方式会造成许多错误,因为现有经验和知识在应对未知事物时是不足的,是有偏差的。
如果出现了业务问题,关联的业务方往往预设一个立场:这事没有看起来那么糟,或者这事和我没关系。
比如转化率下降了,业务方的反应往往是这个数据下降肯定跟自己无关。
自己的运营活动明明做的很成功,转化率下降一定是行业因素、用户质量等等其他因素导致的。于是为了证明这个观点,他们顺着这个预设的前提,找到一些相关的证据来解释转化率下降的现实。
实际上,想要证明一个观点,只要你肯去找,不管观点多么荒谬,总能找到支持你的理由。不仅辛普森悖论这种统计学的把戏可以得出完全相反的结论,即使最简单的“真话不全说”的方法,也能达到这种目的。
比如,我说个比较荒诞的例子:比如中国男足,想要把男足描述成世界强队行不行?当然行。
1.哥斯达黎加是世界杯史上为数不多能够战胜中国队的国家
2.即使是巴西队这样的世界强队也仅战胜过中国队一次
3.自2002年韩日世界杯后,中国队在世界杯正赛上不败纪录已经延续12年
4.纵观漫长的世界杯史,中国队也仅输过三次
5.中国队从未在世界杯点球大战中失利过
6.中国队在领先的情况下从未丢过球
你看,只要你想证明一件事,总能找出一些证据。所以,预设立场再去找证据是一件相当不靠谱的事。
数据分析部门一般独立于业务部门之外,这样可以确保数据分析师没有业绩压力,分析具有独立性。因为数据分析的独立性,所以最终问题究竟是在产品上、运营上或者市场上,数据分析师不会有明显的偏向,只认客观数据。
但是假设验证和预设立场不同。
预设立场,是要找到证据来证明猜想,一个数据不行,那就换另一个数据。直到能证明这个观点为止。
而验证假设,则是事先规划验证这个假设需要的数据。如果数据最终不符合假设,那么就抛弃这个假设。
好的数据分析师,能够根据客观数据,随时抛弃旧的假设,并建立新的假设。
抛弃固有的思维定式,这是非常反人性的,这也是为什么说数据分析需要专业训练的原因。
逻辑思维方法分为归纳法和演绎法。
归纳法是从特殊到一般的推理,是从结果找原因的方法。也就是说,通过观察很多个别事物的特殊性,然后概括出同类事物的特征。
但是我们一般不可能观察到这个事物的所有样本。所以归纳法得出的结论是不确定正确性的。
你有没有听过这个故事:
在一个火鸡饲养场里,一只火鸡发现,不管是艳阳高照还是狂风暴雨,不管是天热还是天冷,不管是星期三和星期四,每一天上午的9点钟,主人都会准时出现,并给它喂食。
于是,它得出了一个惊天大定律:“主人总是在上午9点钟给我喂食。”
时间来到圣诞节的前一天,上午9点,主人又一次准时出现,但是这一次,主人带来的并不是食物,而是把它变成了食物….
这个是英国哲学家伯特兰·罗素提出的一个问题,被称为「罗素的火鸡」,用来讽刺那些归纳主义通过有限的观察,得出自以为正确的结论。
比如一月到三月的成交金额连续上升,初级分析师往往会说:成交金额呈现上升的趋势。
这句话的潜台词是,预计交易金额在四月份也会上升。
这是典型的归纳法思维:因为过去是这样的,所以未来应该也会继续这样。这和那只火鸡的思维其实也没有什么本质的差别。
而且这和没分析一样,你把数据丢给业务方,他们也能看出目前呈现上涨的趋势。如果想要做好数据分析,就不能滥用归纳法,这点依然很反人性。
那我们用演绎法,如何思考这个问题的呢?
演绎法是从一般到特殊的推理,是从原因找结果的方法。
要想预测四月份的成交金额会如何,首先需要分析前三个月的成交金额为什么会上涨?当时的背景是什么?上涨需要哪些条件?四月份的这些条件是否依然存在?如果维持成交金额上涨的条件不变,我们才能说四月份会继续延续这种上涨的势头。
经过演绎法推理的结论才是合理的,而且我们通过深挖找出了内部的原因,这才是业务人员想要知道的。
数据分析的价值就体现在这。
数据分析师是需要大量的逻辑思维训练,但我们自己做好还不够,我们的工作必需和业务方沟通,帮助他们解决实际的业务问题。
但是很多业务人员没有考虑清楚就跑来沟通,他们的需求可能充满了逻辑问题,这时我们就需要帮对方理清思路,找出对方表述背后的逻辑。
数据分析师往往会听到业务方这样问:本周的转化率相比上周已经下降了5%,怎么办?这句话听起来感觉没什么问题,实际上逻辑并不是特别严密。
首先,这句话的前半部分很好地表达了事实,值得表扬。如果前半句是一个观点,我们还要先找到事实。
但是这句话的后半句有问题,后半句的“怎么办”,放在这个语境中,潜台词其实是这样的:
相比最开始的表述,我们分析出这句话中间出现了两个衍生的问题。
问题1:转化率下降5%真的是不好的情况吗?
这就涉及到了标准了,之前提到了我们要找到一个客观标准,通过标准解决出数据的业务含义。因此我们首先要协助业务方找到一个标准。
问题2:如果数据表现真的不好,那么这是现在急需解决的问题吗?
这个问题的答案也是不一定。商业世界要解决的问题太多,在同一时刻,永远存在着各种各样的问题。而企业的资源是有限的,不可能同时解决所有的问题。问题的解决必然有轻重缓急之分。
那么凭什么要先解决转化率的问题,而不是解决引流的问题、留存的问题、活跃度的问题?
数据分析师必须了解企业当前的战略方向,把有限的资源投入到更重要的方向上。
如果上面这两个隐藏的问题不想清楚,就开始分析怎么办,那么这类分析师的工作往往会费力不讨好,做很多低绩效的工作。
很多人想要数据分析速成,他们认为“自然理性”加上“分析工具和方法”就能做好数据分析,分析工具、分析方法等技能确实可以速成,但是数据分析的能力不是自然理性能够驾驭的。
想要做一个好的数据分析师,必须拥有数据分析的思维,如果你学会了很多数据分析的工具和技巧,依然做不好数据分析,建议尝试练习本文提到的思维,要点很简单,坚持,坚持,坚持。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03