作者:麦叔
来源:麦叔编程
上一篇文章,我们讲解了NamedTuple。它可以让我们像使用对象一样使用元组,避免魔术数字,让代码更安全,更易于理解,也比普通对象更快。
下面是其中的例子。有兴趣的麦友可以在合集中往前翻,找到上一篇文章。
from typing import NamedTuple class Stock(NamedTuple): name: str
high: float
low: float
end: float
stock1 = Stock('苹果', 100, 80, 88)
stock2 = Stock(name='百度', high=80, low=63, end=65)
print(stock2.high)
print(stock2.low)
print(stock2.end)
但命名元组有个问题。它的数据是不能修改的,这是元组的重要特点。
那如果我的对象需要修改,怎么办呢?这就是本文的重点!
从Python3.7开始,我们可以用很简洁的语法定义只有属性的类,也就是dataclass。从表面上看,它们非常像命名元组。
下面是dataclass版本的Stock:
from dataclasses import dataclass
@dataclass class Stock: symbol: str
current: float high: float low: float
这个例子中,它的定义几乎和NamedTuple定义完全相同。
dataclass函数是一个类装饰器,使用@符号。dataclass 包含状态且可以被修改,重要的是它的功能很强大。
下面是创建Stock实例的例子:
>>> s = Stock("AAPL", 123.52, 137.98, 53.15)
一旦实例化,Stock对象可以像普通类一样使用。你可以访问和更新它的属性:
>>> s
Stock(symbol='AAPL', current=123.52, high=137.98, low=53.15) >>> s.current 123.52 >>> s.current = 122.25 >>> s
Stock(symbol='AAPL', current=122.25, high=137.98, low=53.15)
我们来看看,dataclass相比普通的类有什么优点。
下面是一个功能类似的普通类:
class StockOrdinary: def __init__(self, name: str, current: float, high: float, low: float) -> None: self.name = name self.current = current self.high = high self.low = low
s_ord = StockOrdinary("AAPL", 123.52, 137.98, 53.15)
「好处1」:dataclass只需要写一次属性名,不需要在__init__()方法的参数和方法体中重复。
「好处2」:dataclass也提供了一个比object类更加友好的字符串表达。
「好处3」:dataclass也包含相等比较运算。
下面的例子可以比较普通类和dataclass的区别:
>>> s_ord
<__main__.StockOrdinary object at 0x7fb833c63f10> >>> s_ord_2 = StockOrdinary("AAPL", 123.52, 137.98, 53.15) >>> s_ord == s_ord_2
False
普通类的默认字符串表达看起来很糟糕,而且它没有相等运算。dataclass的情况就要好多了:
>>> stock2 = Stock(symbol='AAPL', current=122.25, high=137.98, low=53.15) >>> s == stock2
True
「好处4」:你可以为属性指定默认值。
也许股票市场闭市了,你不知道今天股票的价格是什么:
@dataclass class StockDefaults: name: str current: float = 0.0 high: float = 0.0 low: float = 0.0
你可以只用股票名称来创建对象。其他的值会使用默认值:
>>> StockDefaults("GOOG") StockDefaults(name='GOOG', current=0.0, high=0.0, low=0.0)
「好处5」:你可以轻松的添加比较运算,如下所示:
@dataclass(order=True) class StockOrdered: name: str current: float = 0.0 high: float = 0.0 low: float = 0.0
你也许会问:就这么简单?
是的!给装饰器添加order=True参数,就会创建所有的比较运算方法。这使得我们可以比较对象实例,也可以排序。就像下面这样:
>>> stock_ordered1 = StockOrdered("GOOG", 1826.77, 1847.20, 1013.54) >>> stock_ordered2 = StockOrdered("GOOG") >>> stock_ordered3 = StockOrdered("GOOG", 1728.28, high=1733.18,
low=1666.33) >>> stock_ordered1 < stock_ordered2
False >>> stock_ordered1 > stock_ordered2
True >>> from pprint import pprint >>> pprint(sorted([stock_ordered1, stock_ordered2, stock_ordered3]))
[StockOrdered(name='GOOG', current=0.0, high=0.0, low=0.0),
StockOrdered(name='GOOG', current=1728.28, high=1733.18, low=1666.33),
StockOrdered(name='GOOG', current=1826.77, high=1847.2, low=1013.54)]
下次创建类的时候,试试看 @dataclass,写很少的代码就有很强大的功能。
dataclass也可以像普通类一样,添加所需要的实例方法或类方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03