京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:小K
来源:麦叔编程
今天可以来讲解下GIL是个什么了。
❞
GIL是Global Interpreter Lock的缩写,翻译过来就是全局解释器锁。
从字面上去理解,它就是锁在解释器头上的一把锁,它使Python代码运行变得有序。
假如有一段代码:
print(1)print(2)print(3)print(4)print(5)print(6)
运行之后,
123456
GIL通过确保在任何给定时间只运行一个线程来防止竞争条件
❝
GIL确保在任何给定时间只有一个线程在运行。
因此,不可能利用具有线程的多个处理器。
❞
❝
由于CPython的内存管理不是线程安全的,GIL可以防止竞争条件并确保线程安全。
❞
Python有多个解释器实现。分别用C、Java、C#和Python编写的CPython、Jython、IronPython和PyPy是最受欢迎的。
GIL 仅存在于CPython的原始Python实现中。
❝
那为什么不直接使用别的解释器为主要开发用呢?
因为CPython的库最为丰富。
如果别的解释器有支持你代码中的模块,那是可以直接移植过去使用的。
像Jython至今还没有推出Python3,只停留在Python2时代。
❞
我将用三段代码(单线程、多线程、多进程)解决一个问题(把50000000通过n-=1减至0)。
通过对比他们运行的所花费的时间,看哪段代码效率最高。
「单线程」
import timenum = 50000000def countdown(n): while n>0: n -= 1start = time.time()countdown(num)end = time.time()print('花费时间 -', end - start)
运行结果:
花费时间 - 3.7478301525115967
「多线程」
import timefrom threading import Threadnum = 50000000def countdown(n): while n>0: n -= 1t1 = Thread(target=countdown, args=[num//2])t2 = Thread(target=countdown, args=[num//2])start = time.time()t1.start()t2.start()t1.join()t2.join()end = time.time()print('花费时间 -', end - start)
运行结果:
花费时间 - 4.2221999168396
「多进程」
from multiprocessing import Poolimport timenum = 50000000def countdown(n): while n>0: n -= 1if __name__ == '__main__': pool = Pool(processes=2) start = time.time() r1 = pool.apply_async(countdown, [num//2]) r2 = pool.apply_async(countdown, [num//2]) pool.close() pool.join() end = time.time() print('花费时间 -', end - start)
运行结果:
花费时间 - 2.307600975036621
对于「计算密集型任务」,Python的多线程比单线程还慢,
这是由于线程的创建和销毁都要消耗资源(进程消耗资源更大)。
「对比单线程和多线程就能感受到GIL这个枷锁的束缚力了。」
用了多进程后,运行速度一下子从3.73缩短到2.30秒,证明多进程还是能突破GIL的封锁的。
❝
多进程底层是开了多个解释器去运行代码,一个进程一把GIL。
❞
Python三分钟--GIL专题到这一期就结束了~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26