
作者:小K
来源:麦叔编程
今天可以来讲解下GIL是个什么了。
❞
GIL是Global Interpreter Lock的缩写,翻译过来就是全局解释器锁。
从字面上去理解,它就是锁在解释器头上的一把锁,它使Python代码运行变得有序。
假如有一段代码:
print(1)print(2)print(3)print(4)print(5)print(6)
运行之后,
123456
GIL通过确保在任何给定时间只运行一个线程来防止竞争条件
❝
GIL确保在任何给定时间只有一个线程在运行。
因此,不可能利用具有线程的多个处理器。
❞
❝
由于CPython的内存管理不是线程安全的,GIL可以防止竞争条件并确保线程安全。
❞
Python有多个解释器实现。分别用C、Java、C#和Python编写的CPython、Jython、IronPython和PyPy是最受欢迎的。
GIL 仅存在于CPython的原始Python实现中。
❝
那为什么不直接使用别的解释器为主要开发用呢?
因为CPython的库最为丰富。
如果别的解释器有支持你代码中的模块,那是可以直接移植过去使用的。
像Jython至今还没有推出Python3,只停留在Python2时代。
❞
我将用三段代码(单线程、多线程、多进程)解决一个问题(把50000000通过n-=1减至0)。
通过对比他们运行的所花费的时间,看哪段代码效率最高。
「单线程」
import timenum = 50000000def countdown(n): while n>0: n -= 1start = time.time()countdown(num)end = time.time()print('花费时间 -', end - start)
运行结果:
花费时间 - 3.7478301525115967
「多线程」
import timefrom threading import Threadnum = 50000000def countdown(n): while n>0: n -= 1t1 = Thread(target=countdown, args=[num//2])t2 = Thread(target=countdown, args=[num//2])start = time.time()t1.start()t2.start()t1.join()t2.join()end = time.time()print('花费时间 -', end - start)
运行结果:
花费时间 - 4.2221999168396
「多进程」
from multiprocessing import Poolimport timenum = 50000000def countdown(n): while n>0: n -= 1if __name__ == '__main__': pool = Pool(processes=2) start = time.time() r1 = pool.apply_async(countdown, [num//2]) r2 = pool.apply_async(countdown, [num//2]) pool.close() pool.join() end = time.time() print('花费时间 -', end - start)
运行结果:
花费时间 - 2.307600975036621
对于「计算密集型任务」,Python的多线程比单线程还慢,
这是由于线程的创建和销毁都要消耗资源(进程消耗资源更大)。
「对比单线程和多线程就能感受到GIL这个枷锁的束缚力了。」
用了多进程后,运行速度一下子从3.73缩短到2.30秒,证明多进程还是能突破GIL的封锁的。
❝
多进程底层是开了多个解释器去运行代码,一个进程一把GIL。
❞
Python三分钟--GIL专题到这一期就结束了~
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26