京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:俊欣
来源:关于数据分析与可视化
在数据可视化图表中,词云图的应用随处可见。它通常是对输入的一段文字进行词频提取,然后以根据词汇出现频率的大小集中显示高频词,简洁直观高效,今天小编就来分享一下在Python如何绘制出来精湛的词云图。
我们先来尝试绘制一张简单的词云图,用到的Python当中的wordcloud模块来绘制,
import jieba
from wordcloud import WordCloud import matplotlib.pyplot as plt
我们导入文本内容,并且去除掉一下换行符和空格,代码如下
text = open(r"明朝那些事儿.txt",encoding='utf8').read()
text = text.replace('n',"").replace("u3000","")
我们需要将其分成一个个的词,这个时候就需要用到jieba模块了,代码如下
text_cut = jieba.lcut(text) # 将分好的词用某个符号分割开连成字符串 text_cut = ' '.join(text_cut)
当然了,得到的结果当中或许存在着不少我们不需要看的、无关紧要的内容,这个时候就需要用到停用词了,我们可以自己来构建,也可以直接使用别人已经构建好的停词表,这里小编采用的是后者,代码如下
stop_words = open(r"常见中文停用词表.txt").read().split("n")
下面便是绘制词云图的核心代码了
word_cloud = WordCloud(font_path="simsun.ttc", # 设置词云字体 background_color="white", # 词云图的背景颜色 stopwords=stop_words) # 去掉的停词 word_cloud.generate(text_cut)
word_cloud.to_file("1.png")
output
这样一张极其简单的词云图算是做好了,当然我们可以给它添加一个背景图片,例如下面这张图片,
主要需要添加的代码如下所示
background = Image.open(r"5.png")
graph = np.array(background)
然后在WorCloud当中添加mask参数
# 使用WordCloud生成词云 word_cloud = WordCloud(font_path="simsun.ttc", # 设置词云字体 background_color="white", # 词云图的背景颜色 stopwords=stop_words, # 去掉的停词 mask=graph)
word_cloud.generate(text_cut)
word_cloud.to_file("1.png")
output
除此之外,还有另外一个模块stylecloud绘制出来的词云图也是非常酷炫的,其中我们主要是用到下面这个函数
gen_stylecloud(text=None, icon_name='fas fa-flag', colors=None, palette='cartocolors.qualitative.Bold_5', background_color="white", max_font_size=200, max_words=2000, stopwords=True, custom_stopwords=STOPWORDS, output_name='stylecloud.png', )
其中几个常用的参数有
我们来尝试绘制一个词云图,代码如下
stylecloud.gen_stylecloud(text=text_cut,
palette='tableau.BlueRed_6',
icon_name='fas fa-apple-alt',
font_path=r'田英章楷书3500字.ttf',
output_name='2.png',
stopwords=True,
custom_stopwords=stop_words)
output
其中的palette参数作为调色板,可以任意变换的,具体参考:https://jiffyclub.github.io/palettable/ 这个网站。
最后我们来看一下如何用Pyecharts模块来进行词云图的绘制,代码如下
from pyecharts import options as opts
from pyecharts.charts import Page, WordCloud
words = [
("皇帝", 10000),
("朱元璋", 6181),
("明朝", 4386),
("朝廷", 4055),
("明军", 2467),
("士兵", 2244),
("张居正", 1868),
("王守仁", 1281)
] c = ( WordCloud()
.add("", words, word_size_range=[20, 100])
.set_global_opts(title_opts=opts.TitleOpts(title="基本示例"))
) c.render("1.html")
output
出来的结果略显简单了,不过这里值得注意的是,pyecharts当中的WordCloud()方法传入的数据是指定的词语以及其出现的频次,这个和之前的操作有所不同
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23