京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:小K
来源:麦叔编程
现实生活中我一看到高阶两个字,就会下意识的眉头一紧,想着肯定是什么高难度的玩意。
但Python的高阶函数并不是要Python水平很高的人才能去用,其实现实开发中还挺常用的,有时候可能用到了也不知道这个叫做高阶函数。
图片内容与本文无关
❝
Python的高阶函数其实就是接受函数为参数,或者把函数作为结果返回的函数是高阶函数(higher-order function)。
❞
假如有个需求:写个abs_add函数,求两个数值的绝对值之和。
这很简单,
def abs_add(v1, v2): return abs(v1) + abs(v2)
r = abs_add(-5, 6)
print(r)
运行结果:
11
def abs_add(v1, v2, func): return func(v1) + func(v2) r = abs_add(-5, 6, abs) print(r)
运行结果:
11
「这里的代码把abs这个内置函数作为参数传进abs_add函数中,那么此时abs_add就成了高阶函数。」
cars = ['Toyota', 'GM', 'Volkswagen', 'Honda', 'Tesla', 'Benz'] print(sorted(cars, key=len)) # 根据字符串长度进行排序
输出结果:
['gm', 'benz', 'honda', 'tesla', 'toyota', 'volkswagen']
根据字符串长度排序(sorted和len都是内置函数)。
假如我现在想按照列表中的最后一个字符串的字母进行排序,那么我怎么怎么去写key呢?
❝
Toyota的最后一个字符是a,gm则是m,正常字符串排序出来都是按照首字符的字母abc...顺序。
❞
def reverse(string): return string[::-1] print(reverse('BMW'))
输出结果
WMB
cars = ['toyota', 'gm', 'volkswagen', 'honda', 'tesla', 'benz'] def reverse(string): return string[::-1]
print(sorted(cars)) # 非翻转排序 print(sorted(cars, key=reverse)) # 翻转排序
输出结果:
['benz', 'gm', 'honda', 'tesla', 'toyota', 'volkswagen'] ['honda', 'tesla', 'toyota', 'gm', 'volkswagen', 'benz']
Python最常用的高阶函数还有map、filter 和 reduce,分别实现映射,筛选和运算的功能,当然它们也可以传入很多“条件”。
今天三分钟结束,有兴趣的小伙伴可以继续探究以上三个高阶函数。
「高阶函数,你学废了么?」
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02