京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:俊欣
来源:关于数据分析与可视化
今天小编打算来讲一下Pandas和SQL之间语法的差异,相信对于不少数据分析师而言,无论是Pandas模块还是SQL,都是日常学习工作当中用的非常多的工具,当然我们也可以在Pandas模块当中来调用SQL语句,通过调用read_sql()方法
首先我们通过SQL语句在新建一个数据库,基本的语法相信大家肯定都清楚,
CREATE TABLE 表名 (
字段名称 数据类型 ...
)
那么我们来看一下具体的代码
import pandas as pd import sqlite3
connector = sqlite3.connect('public.db')
my_cursor = connector.cursor()
my_cursor.executescript("""
CREATE TABLE sweets_types
(
id integer NOT NULL,
name character varying NOT NULL,
PRIMARY KEY (id)
);
...篇幅有限,详细参考源码...
""")
同时我们也往这些新建的表格当中插入数据,代码如下
my_cursor.executescript("""
INSERT INTO sweets_types(name) VALUES
('waffles'),
('candy'),
('marmalade'),
('cookies'),
('chocolate');
...篇幅有限,详细参考源码...
""")
我们可以通过下面的代码来查看新建的表格,并且转换成DataFrame格式的数据集,代码如下
df_sweets = pd.read_sql("SELECT * FROM sweets;", connector)
output
我们总共新建了5个数据集,主要是涉及到了甜品、甜品的种类以及加工和仓储的数据,而例如甜品的数据集当中主要包括的有甜品的重量、糖分的含量、生产的日期和过期的时间、成本等数据,以及
df_manufacturers = pd.read_sql("SELECT * FROM manufacturers", connector)
output
加工的数据集当中则涉及到了工厂的主要负责人和联系方式,而仓储的数据集当中则涉及到了仓储的详细地址、城市所在地等等
df_storehouses = pd.read_sql("SELECT * FROM storehouses", connector)
output
还有甜品的种类数据集,
df_sweets_types = pd.read_sql("SELECT * FROM sweets_types;", connector)
output
接下来我们来做一些数据筛查,例如筛选出甜品当中重量等于300的甜品名称,在Pandas模块中的代码是这个样子的
# 转换数据类型 df_sweets['weight'] = pd.to_numeric(df_sweets['weight']) # 输出结果 df_sweets[df_sweets.weight == 300].name
output
1 Mikus 6 Soucus 11 Macus Name: name, dtype: object
当然我们还可以通过pandas当中的read_sql()方法来调用SQL语句
pd.read_sql("SELECT name FROM sweets WHERE weight = '300'", connector)
output
我们再来看一个相类似的案例,筛选出成本等于100的甜品名称,代码如下
# Pandas df_sweets['cost'] = pd.to_numeric(df_sweets['cost'])
df_sweets[df_sweets.cost == 100].name # SQL pd.read_sql("SELECT name FROM sweets WHERE cost = '100'", connector)
output
Milty
针对文本型的数据,我们也可以进一步来筛选出我们想要的数据,代码如下
# Pandas df_sweets[df_sweets.name.str.startswith('M')].name # SQL pd.read_sql("SELECT name FROM sweets WHERE name LIKE 'M%'", connector)
output
Milty Mikus
Mivi
Mi
Misa
Maltik
Macus
当然在SQL语句当中的通配符,%表示匹配任意数量的字母,而_表示匹配任意一个字母,具体的区别如下
# SQL pd.read_sql("SELECT name FROM sweets WHERE name LIKE 'M%'", connector)
output
pd.read_sql("SELECT name FROM sweets WHERE name LIKE 'M_'", connector)
output
下面我们来看一下多个条件的数据筛选,例如我们想要重量等于300并且成本价控制在150的甜品名称,代码如下
# Pandas df_sweets[(df_sweets.cost == 150) & (df_sweets.weight == 300)].name # SQL pd.read_sql("SELECT name FROM sweets WHERE cost = '150' AND weight = '300'", connector)
output
Mikus
或者是筛选出成本价控制在200-300之间的甜品名称,代码如下
# Pandas df_sweets[df_sweets['cost'].between(200, 300)].name # SQL pd.read_sql("SELECT name FROM sweets WHERE cost BETWEEN '200' AND '300'", connector)
output
要是涉及到排序的问题,在SQL当中使用的是ORDER BY语句,代码如下
# SQL pd.read_sql("SELECT name FROM sweets ORDER BY id DESC", connector)
output
而在Pandas模块当中调用的则是sort_values()方法,代码如下
# Pandas df_sweets.sort_values(by='id', ascending=False).name
output
11 Macus 10 Maltik 9 Sor 8 Co 7 Soviet 6 Soucus 5 Soltic 4 Misa 3 Mi 2 Mivi 1 Mikus 0 Milty Name: name, dtype: object
筛选出成本价最高的甜品名称,在Pandas模块当中的代码是这个样子的
df_sweets[df_sweets.cost == df_sweets.cost.max()].name
output
11 Macus Name: name, dtype: object
而在SQL语句当中的代码,我们需要首先筛选出成本最高的是哪个甜品,然后再进行进一步的处理,代码如下
pd.read_sql("SELECT name FROM sweets WHERE cost = (SELECT MAX(cost) FROM sweets)", connector)
我们想要看一下是仓储的城市具体是有哪几个,在Pandas模块当中的代码是这个样子的,通过调用unique()方法
df_storehouses['city'].unique()
output
array(['Moscow', 'Saint-petersburg', 'Yekaterinburg'], dtype=object)
而在SQL语句当中则对应的是DISTINCT关键字
pd.read_sql("SELECT DISTINCT city FROM storehouses", connector)
在Pandas模块当中分组统计一般调用的都是groupby()方法,然后后面再添加一个统计函数,例如是求分均值的mean()方法,或者是求和的sum()方法等等,例如我们想要查找出在不止一个城市生产加工甜品的名称,代码如下
df_manufacturers.groupby('name').name.count()[df_manufacturers.groupby('name').name.count() > 1]
output
name Mishan 2 Name: name, dtype: int64
而在SQL语句当中的分组也是GROUP BY,后面要是还有其他条件的话,用的是HAVING关键字,代码如下
pd.read_sql(""" SELECT name, COUNT(name) as 'name_count' FROM manufacturers GROUP BY name HAVING COUNT(name) > 1 """, connector)
当两个数据集或者是多个数据集需要进行合并的时候,在Pandas模块当中,我们可以调用merge()方法,例如我们将df_sweets数据集和df_sweets_types两数据集进行合并,其中df_sweets当中的sweets_types_id是该表的外键
df_sweets.head()
output
df_sweets_types.head()
output
具体数据合并的代码如下所示
df_sweets_1 = df_sweets.merge(df_sweets_types, left_on='sweets_types_id', right_on='id')
output
我们再进一步的筛选出巧克力口味的甜品,代码如下
df_sweets_1.query('name_y == "chocolate"').name_x
output
10 Misa 11 Sor Name: name_x, dtype: object
而SQL语句则显得比较简单了,代码如下
# SQL pd.read_sql("""
SELECT sweets.name FROM sweets
JOIN sweets_types ON sweets.sweets_types_id = sweets_types.id
WHERE sweets_types.name = 'chocolate';
""", connector)
output
我们来查看一下数据集的结构,在Pandas模块当中直接查看shape属性即可,代码如下
df_sweets.shape
output
(12, 10)
而在SQL语句当中,则是
pd.read_sql("SELECT count(*) FROM sweets;", connector)
output
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14