
作者:麦叔
来源:麦叔编程
熟悉我的人都知道,作为一个多编程语言的码农,我最喜欢的IDE之一是VS Code,因为它轻量,支持多语言,插件丰富还完全免费。
VS Code
但当我去做数据分析或机器学习的工作时,我还是会使用Jupyter Notebook,这几乎是数据科学家们的首选编辑器。
严格来说,最近两年我已经不再使用Notebook了,我使用JupyterLab。看看这界面就知道它多强:
JupyterLab的定义是:下一代基于网页的代码编程工具,Notebook只是JupyterLab中的其中一个工具。
JupyterLab官网介绍
对我来说,JupyterLab最大的优点是:它更像一个IDE了,这一点上面的图中可以看出。我们可以在左边浏览文件目录,右边编程;可以在一个界面中同时打开多个文件;还可以让它们肩并肩的显示。
通过安装插件,它甚至也支持debug,看下图:
Debug
前几周,我和几个数据科学家合作开发一个项目。我提议使用JupyterLab,项目负责人有点慌,担心其他人用习惯了Notebook,不会使用Lab。
这完全没有必要,因为Lab是下一代的Notebook,它包含了Notebook。在使用Lab的过程中,我大部分时候还是在编辑Notebook,使用界面,快捷键和方法都基本上是一样的。
如果你使用Anaconda,比较新版本的已经自带了JupyterLab:
image-20220705071641417
自己安装也很简单:
pip install jupyterlab
或者:
conda install -c conda-forge jupyterlab
如果使用了Anaconda直接点图中的按钮就可以打开
如果你是自己安装的:
jupyter lab
启动起来后,可以看到如下的界面:
Notebook的使用方法和以前的Jupyter Notebook是一样的。
有了调试功能,Lab真的是如虎添翼!简直神了!
但要使用调试功能,还是需要安装一些插件的,具体请参考:
https://blog.jupyter.org/a-visual-debugger-for-jupyter-914e61716559
https://www.reddit.com/r/MachineLearning/comments/foum00/n_jupyter_visual_debugger/
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01