京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:闲欢
来源:Python 技术
大家好,我是闲欢,你们的老相识呀!
海象可谓是最大的哺乳动物了,有人称它是北半球的“土著”居民。它圆头,短而阔的嘴巴,粗大的鼻子,上犬齿形成长达40厘米-90厘米的獠牙,每只4公斤以上。雄海象体长可达4米,重2吨。海象喜群居,数千头簇拥在一起。
海象两眼眯得像缺乏活力的老头子,它们爱睡懒觉,一生中大多时间是躺在冰上度过的,还能在水里睡觉,真是牛出天际。
作为996的卷农,我非常羡慕它们的生活,好想跟他们一样躺平。
好了,言归正传,咱们继续卷吧!今天给大家带来了一个以海象命名的运算符——海象运算符。
Python 海象运算符是在 PEP 572 中提出,并在 Python3.8 版本并入和发布。
海象运算符的英文原名叫 Assignment Expresions ,即 赋值表达式。海象表达式由一个 : 和 一个 = 组成,即 := 。我们一般称作 walrus operator(海象运算符),因为它看起来就是一个海象旋转 90° 而成。作者还是很有想象力的,这都能联系起来!
海象运算符的语法格式是:
(variable_name := expression)
这是一个新的赋值运算符,跟我们常见的 = 类似,一个变量名后面跟一个表达式。
常规写法:
a = 5 if a > 1: print('do sth!')
升级写法:
if a := 5 > 1: print('do sth!')
常规写法:
n = 3 while n: print('do sth!')
n -= 1
升级写法:
n = 3 while (n := n - 1) + 1: print('do sth!')
这里加1是因为执行输出前n就减1了。
常规写法:
fp = open("test.txt", "r") while True:
line = fp.readline() if not line: break print(line.strip())
fp.close()
升级写法:
fp = open("test.txt", "r") while line := fp.readline(): print(line.strip())
在合适的场景中使用海象运算符可以降低程序复杂性,简化代码,甚至可以提高程序的性能。
虽然海象运算符好用,但也不是所有场景都能用,还是有它的局限性的。
我们不能将 = 运算符与 := 运算符一起使用,海象运算符只能是表达式的一部分:
a = 5 # Valid a := 5 # InValid empty_list = [] # Valid empty_list := [] # InValid
如果你这样写,编辑器会直接提示错误。
a += 5 # Valid a :+=5 # Invalid
(lambda: a:= 5) # Invalid lambda: (a := 5) # Valid, but not useful (var := lambda: 5) # Valid
海象运算符使用 := 这个关键字,是大多数开发人员都不太喜欢的,这个关键字跟我们平时接触到的都不一样,创造者独辟蹊径。
我也不太喜欢这个,但是也尊重创造者的规则,毕竟人家给大家带来这么实用的运算符。
一些开发人员认为“海象运算符”这个名称太抽象了,不能清晰地表达出这个运算符的含义,几乎百分之百的人第一次看到这个名称,不会想到它的功能。
欢哥以为,既然没有一套规定的命名方法,作者取个有意义的名字也无可厚非吧。
从此以后,我们的武器库中又多了一件常规武器,大家在打仗(卷别人)时,不要忘了使用,对程序的性能和代码简洁性都会有提升。
熟练使用之后,也许你就有时间睡懒觉晒太阳了!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22