京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:Python进阶者
来源:Python爬虫与数据挖掘
Hello,大家好,我是码农星期八。
本章来给大家介绍一个爬虫利器,嗯。。。,app协议还原利器更合适,当然,自己用的话是利器,别人用是折磨
因为它需要依赖模拟器或手机。对于环境来说是有些麻烦的!
这个东西我们一般称它为frida rpc算法转发
我们都知道现在开发app主流的方案是Java,一些中大厂app是Java+C++,C++最后生成的是so,是arm汇编。
一般分析arm汇编才是最难的,所以中大厂会更倾向把重要加密放在so中,来增强爬虫或者破解的难度!!!
但是如果使用rpc的话,你就不太需要分析繁琐的Java层和so层的加密了!
你需要通过frida主动调用Java层或so层的方法,然后拿到被加密的内容,然后其他的操作不是就可以为所欲为了?
pixel2 v10(已root) Magisk v23.0 Charles v4.6.2 Drony v1.3.154 Python v3.8.6 frida v14.2.18
本次使用的app是嘟嘟牛,百年只刚嘟嘟牛,哈哈哈
通过抓包发现,走的接口是
http://api.dodovip.com/api/user/login
提交的是一个Encrypt:xxxx,返回的是一串字符串,这???啥玩意???
所以我们要模拟这个请求,必定要捋清这个请求和响应是怎么生成的!
app拖入jadx中
搜索关键字Encrypt
主要加密逻辑在这一块,
分析不是这一章的重点,相关hook代码,稍微研究一下就懂了!
Java.perform(function () { function printMap2(map) { return Java.cast(map, Java.use("java.util.HashMap"));
} // Java.use("com.dodonew.online.http.RequestUtil").encodeDesMap.overload('java.lang.String', 'java.lang.String', 'java.lang.String').implementation = function (data, desKey, desIV) { console.log("RequestUtil encodeDesMap is call") console.log("data:", data) console.log("desKey:", desKey)//65102933 console.log("desIV:", desIV)//32028092 let result = this.encodeDesMap(data, desKey, desIV) console.log("RequestUtil encodeDesMap result:", result) return result
}
Java.use("com.dodonew.online.http.RequestUtil").paraMap.overload('java.util.Map', 'java.lang.String', 'java.lang.String').implementation = function (addMap, append, sign) { console.log("RequestUtil paraMap is call") console.log("addMap:", addMap) console.log("addMap:", printMap2(addMap)) console.log("append:", append) console.log("sign:", sign) let result = this.paraMap(addMap, append, sign) console.log("RequestUtil paraMap result:", result) return result
}
Java.use("com.dodonew.online.http.RequestUtil").decodeDesJson.implementation = function (json, desKey, desIV) { console.log("RequestUtil decodeDesJson is call") console.log("json:", json) console.log("desKey:", desKey) console.log("desIV:", desIV) let result = this.decodeDesJson(json, desKey, desIV) console.log("RequestUtil decodeDesJson result:", result) return result
}
})
根据上述hook,整理出来主动调用应该是这样调用的,一个加密,一个解密。
//请求加密 function callparaMap(username, userPwd, timeStamp) { let result = "";
Java.perform(function () { let map = Java.use("java.util.HashMap").$new();
map.put("timeStamp", timeStamp)
map.put("loginImei", "Androidnull")
map.put("equtype", "ANDROID")
map.put("userPwd", userPwd)
map.put("username", username) // let r1 = Java.use("com.dodonew.online.http.RequestUtil").paraMap(map, "sdlkjsdljf0j2fsjk", "sign") // console.log("r1:", r1) // result = Java.use("com.dodonew.online.http.RequestUtil").encodeDesMap(r1, "65102933", "32028092") // console.log("r2:", r2) }) return result;
} //响应加密 function calldecodedesjson(data) { let result = "";
Java.perform(function () {
result = Java.use("com.dodonew.online.http.RequestUtil").decodeDesJson(data, "65102933", "32028092") // console.log("decode:", decode) }) return result;
}
既然上述已经把逻辑捋清楚了,并且也已经写好的主动调用的js代码。
那么就来了,如何和python结合到一起,跑成一个web,这样爬虫只需要响应的参数拿到返回值即可。
代码
from fastapi import FastAPI
import uvicorn
import frida
jsCode = """
function callparamap(username, userPwd, timeStamp) {
let result = "";
Java.perform(function () {
let map = Java.use("java.util.HashMap").$new();
map.put("timeStamp", timeStamp)
map.put("loginImei", "Androidnull")
map.put("equtype", "ANDROID")
map.put("userPwd", userPwd)
map.put("username", username)
//
let r1 = Java.use("com.dodonew.online.http.RequestUtil").paraMap(map, "sdlkjsdljf0j2fsjk", "sign")
// console.log("r1:", r1)
//
result = Java.use("com.dodonew.online.http.RequestUtil").encodeDesMap(r1, "65102933", "32028092")
// console.log("r2:", r2)
})
return result;
}
function calldecodedesjson(data) {
let result = "";
Java.perform(function () {
result = Java.use("com.dodonew.online.http.RequestUtil").decodeDesJson(data, "65102933", "32028092")
// console.log("decode:", decode)
})
return result;
}
rpc.exports = {
encrypt: callparamap,
decode: calldecodedesjson,
};
""" # 准备工作 # process = frida.get_device_manager().add_remote_device('192.168.3.68:27042').attach("com.dodonew.online") process = frida.get_usb_device().attach('com.dodonew.online')
script = process.create_script(jsCode)
print('[*] Running 小肩膀')
script.load()
app = FastAPI() # http://127.0.0.1:8080/getencrypt?username=18903916120&password=1111×tamp=1647662720061 @app.get("/getencrypt")
async def getencrypt(username, password, timestamp):
result = script.exports.encrypt(username, password, timestamp) return {"data": result}
from pydantic import BaseModel class Item(BaseModel): data: str
@app.post("/getdecode")
async def getdecode(item: Item):
result = script.exports.decode(item.data) return {"data": result} if __name__ == '__main__':
uvicorn.run(app, port=8080)
运行
代码
import requests
import time
import json
dt = time.time() * 1000 # 请求加密 url = f"http://127.0.0.1:8080/getencrypt?username=18903916120&password=1111×tamp={dt}" r1 = requests.get(url)
print(r1.json()) # 登录 url = "http://api.dodovip.com/api/user/login" headers = { "Content-Type": "application/json;charset=utf-8" }
data = { "Encrypt": r1.json().get("data")
}
print(data)
r = requests.post(url=url, headers=headers, data=json.dumps(data))
print(r.text) # 拿到请求解密 data = { "data": r.text
}
url = "http://127.0.0.1:8080/getdecode" r = requests.post(url=url,headers=headers, data=json.dumps(data))
print(r.text)
运行
这个app还是很简单的,但是应该用到了俩加密,如果要是硬刚代码的话,还是需要研究研究的。
但是如果使用rpc这种转发方案的话,你就可以发现几行代码就完事了!
但是缺陷也是明显的,需要依赖电脑和手机,如果只是采集数据的话,应该还是挺合适的!
如果在操作过程中有任何问题,记得下面留言,我们看到会第一时间解决问题。
越努力,越幸运。
我是码农星期八,如果觉得还不错,记得动手点赞一下哈。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22