
作者:星安果
来源:AirPython
在使用传统物理机或云服务器上部署项目都会存在一些痛点
比如:项目部署速度慢、资源浪费、迁移难且扩展低
而使用 Docker 部署项目的优势包含:
本篇文章将介绍 Docker 部署一个 Python 项目的常规流程
Dockerfile 是一个放置在项目根目录下的描述文件,可以利用 Docker 命令基于该文件构建一个镜像
常用的指令包含:
使用 Docker 部署应用的常规流程是:
为了演示方便,这里以一个简单的 Flask 项目为例进行讲解
2-1 项目开发
from flask import Flask
# 安装依赖
# pip3 install -U flask
app = Flask(__name__)
@app.route('/')
def index():
return "测试容器部署!"
if __name__ == '__main__':
app.run(host='0.0.0.0', port=8888)
# 浏览器访问测试
# http://127.0.0.1:8888/
项目开发完成,并在本地测试通过后就可以编写 Dockerfile 文件了
2-2 编写 Dockerfile
在项目根目录下,创建一个 Dockerfile 文件,使用上面的指令编写描述脚本
需要注意的是,这里使用「 EXPOSE 」指令暴露的端口号与入口文件定义的端口号保持一致
# Dockerfile
FROM centos:7.9.2009
RUN yum makecache fast;
RUN yum install python3-devel python3-pip -y
RUN pip3 install -i https://pypi.douban.com/simple flask
COPY main.py /opt
WORKDIR /opt
EXPOSE 8888
CMD ["python3","main.py"]
2-3 构建镜像
# 在当前文件夹下,根据Dockerfile文件构建一个镜像
# 镜像名称:xag/my_flask_web
# --no-cache:不使用旧的缓存进行镜像构建
docker build --no-cache -t "xag/my_flask_web" .
2-4 运行镜像容器
使用 docker run 命令基于镜像运行一个容器
其中
# -d:后台运行
# 宿主机(9999)映射容器内的8888(上面Dockerfile已经暴露了8888端口)
docker run -d --name flask_web -p 9999:8888 xag/my_flask_web
2-5 测试一下
最后在浏览器中,通过宿主机暴露的端口号 9999 访问项目了
访问地址:http://127.0.0.1:9999/
文章中以一个简单的 Web 项目阐述了利用 Docker 部署项目的常规流程
实际上,Dockerfile 非常的灵活,它还支持 ARG/ENV 设置环境变量,VOlUME 指令挂载目录,ENTRYPOINT 配置启动程序和参数等,这部分内容大家可以根据官网介绍自行进行扩展
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09