
作者:俊欣
来源:关于数据分析与可视化
相信大家在数据抓取的时候,会碰到很多加密的参数,例如像是“token”、“sign”等等,今天小编就带着大家来盘点一下数据抓取过程中这些主流的加密算法,它们有什么特征、加密的方式有哪些等等,知道了这些之后对于我们逆向破解这些加密的参数会起到不少的帮助!
首先我们需要明白的是,什么是加密和解密?顾名思义
加密和解密算法的操作通常都是在一组密钥的控制下进行的,分别成为是加密密钥(Encryption Key)和解密密钥(Decryption Key),如下图所示
而加密算法当中又分为是对称加密和非对称加密以及散列算法,其中
Base64严格意义上来说不算做事加密的算法,只是一种编码的方式,它是一种用64个字符,分别是A-Z、a-z、0-9、+、/这64个字符,实现对数据的编码,可用于在HTTP环境下传递较长的标识信息。采用Base64编码具有不可读性,需要解码后才能阅读。我们使用Python来对任意网址进行Base64的编码操作,代码如下
import base64 # 想将字符串转编码成base64,要先将字符串转换成二进制数据 url = "www.baidu.com" bytes_url = url.encode("utf-8")
str_url = base64.b64encode(bytes_url) # 被编码的参数必须是二进制数据 print(str_url)
output
b'd3d3LmJhaWR1LmNvbQ=='
那么同样地,我们也可以对其进行解码的操作,代码如下
url = "d3d3LmJhaWR1LmNvbQ==" str_url = base64.b64decode(url).decode("utf-8")
print(str_url)
output
www.baidu.com
MD5是一种被广泛使用的线性散列算法,且加密之后产生的是一个固定长度(32位或者是16位)的数据,由字母和数字组成,大小写统一。其最后加密生成的数据是不可逆的,也就是说不能够轻易地通过加密后的数据还原到原始的字符串,除非是通过暴力破解的方式。
我们在Python当中来实现一下MD5加密
import hashlib
str = 'this is a md5 demo.' hl = hashlib.md5()
hl.update(str.encode(encoding='utf-8')) print('MD5加密前为 :' + str) print('MD5加密后为 :' + hl.hexdigest())
output
MD5加密前为 :this is a md5 demo.
MD5加密后为 :b2caf2a298a9254b38a2e33b75cfbe75
就像上文提到的,针对MD5加密可以通过暴力破解的方式来降低其安全性,因此在实操过程当中,我们会添加盐值(Salt)或者是双重MD5加密等方式来增加其可靠性,代码如下
# post传入的参数 params = "123456" # 加密后需拼接的盐值(Salt) salt = "asdfkjalksdncxvm" def md5_encrypt(): m = md5()
m.update(params.encode('utf8'))
sign1 = m.hexdigest() return sign1 def md5_encrypt_with_salt(): m = md5()
m.update((md5_encrypt() + salt).encode('utf8'))
sign2 = m.hexdigest() return sign2
首先我们来讲DES加密,全称是Data Encryption Standard,即数据加密标准,在对称性加密当中比较常见的一种,也就是加密和解密过程当中使用的密钥是相同的,因此想要破解的话,通过暴力枚举的方式,只要计算的能力足够强还是可以被破解的。
AES的全称是Advanced Encryption Standard,是DES算法的替代者,也是当今最流行的对称加密算法之一。想要弄清楚AES算法,首先就得弄明白三个基本的概念:密钥、填充和模式。
密钥我们之前已经说了很多了,大家可以将其想象成是一把钥匙,既可以用其来进行上锁,可以用其来进行解锁。AES支持三种长度的密钥:128位、192位以及256位。
而至于填充这一概念,AES的分组加密的特性我们需要了解,具体如下图所示
简单来说,AES算法在对明文加密的时候,并不是把整个明文一股脑儿地加密成一整段密文,而是把明文拆分成一个个独立的明文块,每一个明文块的长度为128比特。
这些明文块经过AES加密器的复杂处理之后,生成一个个独立的密文块,将这些密文块拼接到一起就是最终的AES加密的结果了。
那么这里就有一个问题了,要是有一段明文的长度是196比特,如果按照每128比特一个明文块来拆分的话,第二个明文块只有64比特了,不足128比特该怎么办呢?这个时候就轮到填充来发挥作用了,默认的填充方式是PKCS5Padding以及ISO10126Padding。
不过在AES加密的时候使用了某一种填充方式,解密的时候也必须采用同样的填充方式。
AES的工作模式,体现在了把明文块加密成密文块的处理过程中,主要有五种不同的工作模式,分别是CBC、ECB、CTR、CFB以及OFB模式,同样地,如果在AES加密过程当中使用了某一种工作模式,解密的时候也必须采用同样地工作模式。最后我们用Python来实现一下AES加密
import base64 from Crypto.Cipher import AES def AES_encrypt(text, key): pad = 16 - len(text) % 16 text = text + pad * chr(pad) text = text.encode("utf-8") encryptor = AES.new(key.encode('utf-8'), AES.MODE_ECB) encrypt_text = encryptor.encrypt(text) encrypt_text = base64.b64encode(encrypt_text) return encrypt_text.decode('utf-8')
或者大家也可以看一下网上其他的AES加密算法的实现过程,基本上也都是大同小异的,由于篇幅有限,今天暂时就先介绍到这里,后面要是大家感兴趣的话,会去分享一下其他加密算法的实现原理与特征。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12