京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:闲欢
来源:Python 技术
在上篇文章《Python自动操作 GUI 神器——PyAutoGUI》中,我跟大家讲解了一下 pyautogui 的一些基础知识和操作,大家反馈很好,给了我好多赞,在此先跟大家说声三克油!
在得到大家正反馈的同时,我受到了很大鼓舞,感觉如果只是介绍一下基础操作,有点不过瘾,所以今天晚上加班回来,虽然很不想打开电脑,但是还是忍着疲惫给大家奉献一个小实例。
为此,我跑去洗手间用凉水洗了一把脸,顿时清醒多了,下面进入正题。
作为一个 GUI 操作的神器,我们看到了它的操作都很简单,非常通俗易懂,基本上看到函数就能知道它的功效。
下面我来给大家演示一个小栗子,看了这个栗子后你就会明白它的神器由来了。
好了,不给大家绕弯子了,今天的小栗子就是批量给知乎的文章点赞。
我们先来看看知乎的个人主页:
这里,我将下面的 tab 标签切换到文章这里,显示的就是作者的文章列表。
我们先来想一下,如果我要给这位作者的文章点赞,我需要怎么做?
首先,我需要找到点赞的图标;然后,我点击点赞图标,完成一次点赞;当我将视野内的文章点赞完成后,我拖动页面往下滑,继续上面的步骤。
看到这里,你是不是觉得这么说有点二?
但是我们写程序就必须这样,把每一个步骤都明确,然后根据步骤去写逻辑,不然当你动手写逻辑的时候,你可能会遗漏一些细节,导致程序无法达到预期效果,或者出现bug。
有了上面的步骤,我们就可以着手开发代码了。
首先,我要让程序识别点赞的按钮。上篇文章中我介绍过一个小栗子,就是从桌面上找到浏览器的图标,我们需要将浏览器的图标截图保存为一张图片,然后传给程序,让程序用这张图片到屏幕中去寻找。
这里也是一样,我先将知乎的点赞按钮截了图:
按照上面的步骤,我首先需要识别当前桌面上的点赞按钮,只需要一行代码:
allLocation = pyautogui.locateAllOnScreen('agree.png')
这样就可以找到桌面上所有的点赞按钮了。
找到点赞按钮之后,下一步就是点赞了:
def like(): time.sleep(1) if pyautogui.locateOnScreen('agree.png'):
left, top, width, height = pyautogui.locateOnScreen('agree.png')
center = pyautogui.center((left, top, width, height))
pyautogui.click(center)
print('点赞成功!')
这里,我首先休息了1秒钟,防止程序运行过快,把页面搞崩溃或者触发平台的安全策略。
接着我找到点赞的按钮,计算按钮的中心点,然后进行点击。
这样,我们就顺利地完成了一次点赞操作。
然后,我再来写一个判断,如果当前桌面上的点赞按钮都点过了,就滚动屏幕,到下一屏继续点赞:
while True:
allLocation = pyautogui.locateAllOnScreen('agree.png') if len(list(allLocation)) > 0:
like() # 调用点赞函数 else: try:
pyautogui.scroll(-500) print('我滚了!')
except: print('完蛋啦')
整个代码运行起来是这样的:
注意,在程序运行过程中,一定要将打开知乎页面的浏览器切换到桌面最上层,以保证你当前操作的是这个页面。
这里没有写终止条件,所以程序会一直运行下去,直到你手动终止。
整个栗子就是这样的,简约而不简单,虽然只有几行代码,但是替我完成了一次自动化操作。可能这里举知乎的例子还不太恰当,因为知乎是有分页的,如果是瀑布流的页面,那真的可以一直点赞下去。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22