京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:俊欣
来源:关于数据分析与可视化
相信对于不少的数据分析从业者来说呢,用的比较多的是Pandas以及SQL这两种工具,Pandas不但能够对数据集进行清理与分析,并且还能够绘制各种各样的炫酷的图表,但是遇到数据集很大的时候要是还使用Pandas来处理显然有点力不从心。
今天小编就来介绍另外一个数据处理与分析工具,叫做Polars,它在数据处理的速度上更快,当然里面还包括两种API,一种是Eager API,另一种则是Lazy API,其中Eager API和Pandas的使用类似,语法类似差不太多,立即执行就能产生结果。
而Lazy API和Spark很相似,会有并行以及对查询逻辑优化的操作。
我们先来进行模块的安装,使用pip命令
pip install polars
在安装成功之后,我们分别用Pandas和Polars来读取数据,看一下各自性能上的差异,我们导入会要用到的模块
import pandas as pd import polars as pl import matplotlib.pyplot as plt
%matplotlib inline
本次使用的数据集是某网站注册用户的用户名数据,总共有360MB大小,我们先用Pandas模块来读取该csv文件
%%time df = pd.read_csv("users.csv")
df.head()
output
可以看到用Pandas读取CSV文件总共花费了12秒的时间,数据集总共有两列,一列是用户名称,以及用户名称重复的次数“n”,我们来对数据集进行排序,调用的是sort_values()方法,代码如下
%%time df.sort_values("n", ascending=False).head()
output
下面我们用Polars模块来读取并操作文件,看看所需要的多久的时间,代码如下
%%time data = pl.read_csv("users.csv") data.head()
output
可以看到用polars模块来读取数据仅仅只花费了730毫秒的时间,可以说是快了不少的,我们根据“n”这一列来对数据集进行排序,代码如下
%%time data.sort(by="n", reverse=True).head()
output
对数据集进行排序所消耗的时间为1.39秒,接下来我们用polars模块来对数据集进行一个初步的探索性分析,数据集总共有哪些列、列名都有哪些,我们还是以熟知“泰坦尼克号”数据集为例
df_titanic = pd.read_csv("titanic.csv")
df_titanic.columns
output
['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', ......]
和Pandas一样输出列名调用的是columns方法,然后我们来看一下数据集总共是有几行几列的,
df_titanic.shape
output
(891, 12)
看一下数据集中每一列的数据类型
df_titanic.dtypes
output
[polars.datatypes.Int64, polars.datatypes.Int64, polars.datatypes.Int64, polars.datatypes.Utf8, polars.datatypes.Utf8, polars.datatypes.Float64, ......]
我们来看一下数据集当中空值的分布情况,调用null_count()方法
df_titanic.null_count()
output
我们可以看到“Age”以及“Cabin”两列存在着空值,我们可以尝试用平均值来进行填充,代码如下
df_titanic["Age"] = df_titanic["Age"].fill_nan(df_titanic["Age"].mean())
计算某一列的平均值只需要调用mean()方法即可,那么中位数、最大/最小值的计算也是同样的道理,代码如下
print(f'Median Age: {df_titanic["Age"].median()}')
print(f'Average Age: {df_titanic["Age"].mean()}')
print(f'Maximum Age: {df_titanic["Age"].max()}')
print(f'Minimum Age: {df_titanic["Age"].min()}')
output
Median Age: 29.69911764705882 Average Age: 29.699117647058817 Maximum Age: 80.0 Minimum Age: 0.42
我们筛选出年龄大于40岁的乘客有哪些,代码如下
df_titanic[df_titanic["Age"] > 40]
output
最后我们简单地来绘制一张图表,代码如下
fig, ax = plt.subplots(figsize=(10, 5))
ax.boxplot(df_titanic["Age"])
plt.xticks(rotation=90)
plt.xlabel('Age Column')
plt.ylabel('Age')
plt.show()
output
总体来说呢,polars在数据分析与处理上面和Pandas模块有很多相似的地方,其中会有一部分的API存在着差异。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14