
作者:極光
来源:Python 技术
正则表达式相信大家应该都不陌生,本质上就是一种微小的、高度专业化的编程语言,使用它你可以为要匹配的可能字符串集指定规则。大多数编程语言正则语法基本相似,只是实现正则的函数库不同,今天就来跟大家一起了解下 Python 支持正则表达式的函数。
正则最简单的应用,就是对字符串进行操作,用来找出想要匹配的字符串,比如 Python 就只会匹配字符串 Python ,当然也可以设置不区分大小写,这样就可以匹配更多,比如 python、pyThon等。
如果还想来点复杂的匹配要怎么做,这就需要用到元字符了,下面就是所有的元字符:
// 元字符 [ ] ( ) . ^ $ * + ? { } |
这一对元字符主要用于指定字符类,也就是你想要匹配的一组字符。
比如:[asd] 就是要匹配任何字符 a, s, d,但如果想匹配 a b c d e …… x y z 是不是要把所有的都写一遍?当然不是了,这个我们可以写成 [a-z] 就行了,- 就是用来表示一个范围,再比如表示数字 1 至 9,可以写成 [1-9] 。
上面说的是包含的字符范围,如果想匹配不包含的范围要怎么做?这就要用到元字符 ^,比如匹配除了 n, u, 3 之外的字符,可以写成 [^nu3]。
还有一点需要注意,在 [ ] 中的元字符会作为普通字符匹配,比如 [$+] 就会匹配 $, +。
最后说下元字符 ,它的意义是用于转义所有元字符,也就是去掉元字符的特殊性,比如 {$\,其实就是匹配字串 {, $, 。
上面说了 [a-z] 可以匹配所有小写字母,[0-9] 用来匹配所有数字,这样已经够简单了,还有更简单的几种特殊范围表达方式。
字符说明.匹配除 "n" 之外的任何单个字符。要匹配包括 'n' 在内的任何字符,请使用象 '[.n]' 的模式。d相当于[0-9],即匹配一个数字字符。D相当于[^0-9],即匹配一个非数字字符。s相当于[fnrtv],也就是匹配任何空白字符,包括空格、制表符、换页符等等。S相当于[^fnrtv],匹配任何非空白字符。w相当于[a-zA-Z0-9_],匹配任何字母与数字字符。W相当于[^a-zA-Z0-9_],匹配任何非字母与数字字符。
上面这些特殊序列可以包含在字符类中,比如 [sd,] 即匹配任何空白字符,数字和 ,。
只是做到匹配字符串集合,肯定是不够的,它还有个更大的优势,那就是可以指定某一部分字符是重复的,并且可以指定重复的次数。
先说第一个表示重复的元字符 *,它用来指定前面一个字符可以重复0次或者多次。
比如 ap*le 将会匹配 apple,appple,ale 等等。
这里当重复正则时,匹配引擎会尝试尽可能多的重复它。当发现模式的后续部分不匹配,则匹配引擎将会回退并以较少的重复次数再次尝试。
另一个重复的元字符 +,它用来表示前一个字符可重复1次或多次。它跟 * 相比,其实就是少了一个重复0次,也就是上面 ap*le 换成 ap+le 不会出现匹配到 ale。
第三个元字符就是 ?,它用来表示前一个字符可重复0次或1次,把上面的例子换成 ap?le,其实就是两个字符串 ale 或 aple。
最后一个复杂些就是 {m,n},这个表示前一个字符可重复次数是一个区间,也就是最少重复m次,最多重复n次。
例如 ap{2,3}le将会匹配 apple,appple 两个字符串,其他都不会匹配。
在这里需要注意下,m 需要小于 n,当然 m 或 n 也是可以省略的。比如当 m=0 时,可以省略 m,当 n 为无穷大时,也可以省略 n。
对!你没看错,如果想使用正则表达式,首先得要把它编译成模式对象。编译成对象后,它就可以使用各种操作方法了,比如字串匹配查询或替换等。
Python 编译的方法是 re.compile('正则表达式'),比如 re.compile('ap?le')。
当然也可以传一些特殊的参数,比如忽略大小写,那上面的编译方法就可以写成 re.compile('ap?le', re.IGNORECASE),这样在匹配字串时就可以忽略大小写了。
那除了这个还有别的参数吗?有,下面我把一部分常用的参数列出来,对了参数还可以简写,比如刚才使用的 re.IGNORECASE 可以简写成 re.I,这样就方便多了。
以下是常用编译参数:
参数简写说明IGNORECASEI忽略大小写ASCIIA使几个转义(w、b、s和d)匹配仅与具有相应特征属性的 ASCII 字符匹配DOTALLS使 . 匹配任何字符,包括换行符LOCALEL进行区域设置感知匹配MULTILINEM多行匹配,影响 ^ 和 $VERBOSEX忽略正则字符串中的空格,除非空格位于字符类中或前面带有未转义的反斜杠,可以组织和缩进,还可以写注释
大部分都容易理解,只是最后一个参数 VERBOSE 可能不太容易理解,这里给大家个官方的例子看下就理解了。
test = re.compile(r"""
&[#] # 数字开始部分
(
0[0-7]+ # 八进制
| [0-9]+ # 小数形式
| x[0-9a-fA-F]+ # 十六进制
)
; # 结束分号
""", re.VERBOSE)
其实上面说的编译都只是在做准备,准备接下来要介绍的,正则表达式最重要的查询匹配。
常用匹配方法:
上面这些方法,如果匹配成功,会返回一个对象实例,其中包含匹配相关的信息:起始和终结位置、匹配的子串以及其它信息。
// 示例代码
import re
ret = re.compile('[0-9]+')
ret.match("apple") // 返回 None
ret.match("12189") // 返回 <re.Match object; span=(0, 5), match='12189'>
ret.match("121ab") // 返回 <re.Match object; span=(0, 3), match='121'>
好了,今天我们简单介绍了下正则表达式,以及在 Python 中如何使用正则表达式,其实以上这些只是基础,后续还会为大家介绍更多。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15