京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA数据分析师 出品
作者:徐杨老师
编辑:Mika
同学们大家好,我是徐杨老师,今天给大家分享一个现在前沿的业务分析方法。
现在有一个非常前沿的词叫做数据漂移,可能有一部分同学听说过,英文是Data Drift。
数据漂移是什么?
那么,什么叫做数据漂移呢?
我们举个例子,现在有一个APP非常火,叫做国家反诈中心APP。
我们知道,如今网络诈骗是一个很让大家头疼的问题,那么假如说你作为公司的分析师,也受命需要去开发一套用来给你的企业识别异常用户的一套分析模型。
经常我们会碰到的一个问题是,你花了很大的力气把分析模型都构造好了,上线以后很快发现,这个模型明明知道之前在测试集上跑的效果还不错,但是实际上线部署以后模型的效果会快速下降,这是为什么呢?
其实很简单。不止我们作为分析师的分析能力在进化,那些犯罪分子的犯罪方法也是太进化的。也就是说如果我们用的是以前的分析方法来识别新的犯罪分子的犯罪手段,肯定效果是要大打折扣的。
从技术语言来说,如果我们是用以前的数据训练出的模型来分析现在的一些新数据,那么这就是训练模型的时候,我们面对的数据分布和我们实际模型上线部署时,面对的数据分布是产生了变化的。
这种问题就叫做数据漂移。
现在一般在业界解决数据漂移比较经典的方法是引入自动机器学习。
同学们知道我们一般做数据分析的时候是先收集数据,然后构造模型,最后输出分析结果。
那么我们就可以在最后输出分析结果的地方,增加一般叫做monitor,或者说叫做模型监控的这样一段代码。
它的作用是实时分析,现在模型预测的效果是好是坏,然后调整的不是模型,调整的是谁呢?
如果监测出问题,调整的是我们收集数据这个环节的工作。然后通过收集更新的数据,实时去调整模型里面的参数,然后再继续去监控我现在自动更新出的模型效果如何。
总结一下就是,传统的方法是我们在训练模型的时候,拿到的数据集是固定的,我们动的是我们选择哪些模型,模型里的参数怎么调优,怎么给出最后好的方法组合。这是我们传统的方法,固定数据,动模型,动参数。
现在更新的方法是,我们首先要保证我们的模型训练的没有问题,然后固定模型,动数据。
那么,应该怎么动数据?怎么去拿到新的数据?
是看我们监控到的模型分析结果来,反过来决定我们要在哪些地方埋下更多的点,拿到更新的数据,以及拿到哪些有用的特征,去实时的更新模型里面的超参数。
这是现在用来解决数据漂移一个比较前沿的分析方法,希望对大家有帮助。
好,以上就是今天的分享。如果大家还有数据分析方面相关的疑问,就在评论区留言。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16