京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“数据科学家是用来分析和解释复杂数字数据的人,如网站的使用统计数据,尤其是为了帮助企业决策。”
-牛津词典
“数据分析师是处理数据以提供洞察力的专业人员,他们获取原始或非结构化数据,并提出分析结果,以产生可消化的结果,供高管和其他人用于决策。”
-Techopedia
“数据科学家是能够根据过去的模式预测未来的人,而数据分析师只是从数据中获得有意义的见解的人。
所以现在我们有了定义,我认为真正理解两者区别的最好方法是进行比较。
*建议这样做。还有其他途径可以成为一名数据科学家/分析人员。看看我之前的帖子。
虽然他们在两种职业道路上有许多相似之处,但也有许多不同之处。数据科学家得到的报酬越高,责任就越大。这项额外的责任需要更多的学习、更多的知识和更多的练习您的编码技能。
下面是一些建议,如果您希望从数据分析师过渡到数据科学家,我会建议您做些什么。
扮演数据科学家的角色。
如果您已经决定转变为一名数据科学家,您必须做了大量额外的阅读,以完全理解成为一名数据科学家所需要的内容。您将从描述数据的趋势到使用现有数据发现新数据,并建立机器学习模型来支持您的假设。
数据科学家:
提高技能。
作为一名数据分析师,您可能不是每天都在编码。你的工作要求包括你编写代码和使用你的技术技能,然而,你的一些时间可能被分配到其他地方,例如识别趋势以帮助商业决策。作为一名数据科学家,拥有编写代码的能力是至关重要的,因为您将在大部分时间内进行编写,同时还要能够轻松地切换和使用不同的编程环境。这可能要求您理解常用的不同编程语言(如R、Python和Java)的语法。
与数据科学家相比,数据分析家使用的数学和统计方法非常少。因此,复习你的数学和统计数据将对你大有裨益,因为你将不得不在你的日常生活中应用这些知识。您将不得不从头开始编写算法,并充分理解这些机器学习算法是如何工作的。
你做的代码越多,你学的编程语言越多,你就会成为更好的数据科学家。你可以通过练习你的代码,创建辅助项目,参与到代码挑战中,比如Kaggle、LeetCode等等来实现以上两点。你知道你是否能成为一名数据科学家的唯一方法,就是练习过数据科学家的生活。
如果您打算从数据分析师过渡到数据科学家,我希望这能帮助您了解这两个角色之间的差异,并为您提供指导。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22