
大数据下“需求为王”还是万能公式么
大数据, 当红炸子鸡,无论互联网公司,还是传统公司,言必谈之。因为它正悄然改变了人们的吃、穿、住、用、行,乃至生活的方方面面。
与此同时,“满足用户之所需”也成为企业的经营铁律,一时间,为各家所追捧。毕竟,在商业博弈中,满足了用户的要求就是击中了用户的痛点,这是很多企业成功的秘诀。
所以在诸多领域,“用户要什么,你就给什么”的大数据运营思路大行其道。但近日,老胡参加了财新传媒举办的一个大数据论坛,听链家网副总裁闫觅的论调,让人对这种经营铁律有了新的认知。闫觅出身百度、在业内被称之为“房产中介行业里最懂大数据的技术牛人”。
1从“母爱算法”到“父爱算法”
(闫觅讲述链家房产的“父爱算法”)
“房产行业比较特殊,其是低频率高客单价的交易,这让用户很难正确的把握预期,对心目中的房子难以准确把控。而且,由于用户对市场和房源情况不了解,容易形成对房子错误预期,数据显示多数情况用户最终成交的房子与用户最初所描绘的需求出入很大。”闫觅认为,这种情况下,“用户要什么,你就给什么”的大数据运营思路正在面临挑战。
在闫觅看来,满足“用户所要”这一定律在房产大数据是不够的,不是“用户要什么,你就给什么”,而是“当用户也不知道要什么的时候,我告诉用户什么更适合你”。而这时候,用户们就需要一种新的“父爱算法”了。
所谓的“父爱算法”就是一种大数据的方法轮,近期,由罗辑思维创办人罗振宇所提出,是相对母爱算法的一种说法。具体而言,母爱算法 = 用户要什么,你就给什么;父爱算法 = 我告诉你什么叫好,什么适合你。
此前,在商业字典中,主要流行“母爱算法”,以满足用户需求为主,但在房产领域,用户要提高交易体验,需要平台运营方来主动告诉用户什么更适合他,所以链家在房产领域践行的大数据应用逻辑正是与这种“父爱算法”的精髓一致。
具体而言,要实现这种“父爱算法”需要两步: 第一步,对用户需求的深入挖掘,建立起用户的需求画像,并在进行购房交易时,通过之前用户的相似比对,提供给用户更多选择空间。第二步,锁定了区域后,把最适合的房子匹配给用户。这种算法的前提,则是要完成大数据的原始基础积累,这是最难的,也是最核心的竞争壁垒。
自2008年起,链家就开始着手打造楼盘字典,用了8年时间,耗资近4.5亿在全国28个重点城市和地区,覆盖3亿人口的范围内,建立起一个全国最大的楼盘数据库,管理7000万房源数据。此外,链家更注重对人的大数据分析,用107个维度对用户行为进行描述,从125个维度对经纪人本身进行分析。最终形成了对房、人和交易流程的全面数据积累。
可以说,这些是链家能以大数据践行“父爱算法”的基础,别的玩家即使明白这个道理,短期内也很难做到。
2大数据3.0时代,颠覆的力量
从今天来看,链家已经不再是一个传统的房产中介,而是正逐步发展为一家名副其实的房产领域互联网化的大数据公司,并在大数据运用上加速挺进。
正是基于数据的分析和积累,链家能够践行“父爱算法”,做到更智能化的推荐,迅速对用户的真实需求做出预判,给出更合理的建议,避免在交易过程中的资源与时间的浪费,最终切实帮助用户拉近他们与未来理想家的距离。
值得关注的是,透过链家房产大数据背后,我们能看到一股颠覆的力量开始凸显。
大数据时代不止于“大”,企业对数据资产的厚度与深度的积累成为了决定大数据成败的关键。随着房、人和交易数据的不断积累以及“父爱算法”等技术的不断迭代,链家将能够为用户带来更加智能化的房屋交易体验,不仅填补了用户的需求空白,更能颠覆用户的预期。看似只是一种算法的一小步,却是房产行业的一大步。
这种论调也能找到例证,比如苹果就是创造了用户的需求,因为用户最开始也不知道自己的需求,比如Pad平板,比如触屏手机,苹果就是用产品告诉你什么叫好的选择,最终颠覆了原来的手机产品。
从另一方面来看,链家践行“父爱算法”也意味着房产大数据发展到了一个新的阶段。现实中,从2008年开始,链家就开始做互联网大数据。最开始是线上线下的简单数据的呈现、共享联动,这是原始的数据积累阶段,是大数据的1.0版本;随后到了对房产交易数据进行抓取分析,2.0后阶段;当下则是新的3.0阶段。即数据与商业深度融合,“父爱算法”下实现智能化的体验,数据分析反哺销售,产生新的增值,这就是大数据3.0时代。这将是未来大数据发展的主旋律。
不过,整体中国房地产的大数据之路,任重而道远。当前,大数据玩法在房地产行业落地少,成效不显著,所以之前万科王石直言万科人暂时不要跟他提大数据。但有一点我们必须看到,这是大势所趋,链家的做法将对整个行业产生积极的意义。
只要方向对了,怎么努力都是值得的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18