京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据下“需求为王”还是万能公式么
大数据, 当红炸子鸡,无论互联网公司,还是传统公司,言必谈之。因为它正悄然改变了人们的吃、穿、住、用、行,乃至生活的方方面面。
与此同时,“满足用户之所需”也成为企业的经营铁律,一时间,为各家所追捧。毕竟,在商业博弈中,满足了用户的要求就是击中了用户的痛点,这是很多企业成功的秘诀。
所以在诸多领域,“用户要什么,你就给什么”的大数据运营思路大行其道。但近日,老胡参加了财新传媒举办的一个大数据论坛,听链家网副总裁闫觅的论调,让人对这种经营铁律有了新的认知。闫觅出身百度、在业内被称之为“房产中介行业里最懂大数据的技术牛人”。
1从“母爱算法”到“父爱算法”
(闫觅讲述链家房产的“父爱算法”)
“房产行业比较特殊,其是低频率高客单价的交易,这让用户很难正确的把握预期,对心目中的房子难以准确把控。而且,由于用户对市场和房源情况不了解,容易形成对房子错误预期,数据显示多数情况用户最终成交的房子与用户最初所描绘的需求出入很大。”闫觅认为,这种情况下,“用户要什么,你就给什么”的大数据运营思路正在面临挑战。
在闫觅看来,满足“用户所要”这一定律在房产大数据是不够的,不是“用户要什么,你就给什么”,而是“当用户也不知道要什么的时候,我告诉用户什么更适合你”。而这时候,用户们就需要一种新的“父爱算法”了。
所谓的“父爱算法”就是一种大数据的方法轮,近期,由罗辑思维创办人罗振宇所提出,是相对母爱算法的一种说法。具体而言,母爱算法 = 用户要什么,你就给什么;父爱算法 = 我告诉你什么叫好,什么适合你。
此前,在商业字典中,主要流行“母爱算法”,以满足用户需求为主,但在房产领域,用户要提高交易体验,需要平台运营方来主动告诉用户什么更适合他,所以链家在房产领域践行的大数据应用逻辑正是与这种“父爱算法”的精髓一致。
具体而言,要实现这种“父爱算法”需要两步: 第一步,对用户需求的深入挖掘,建立起用户的需求画像,并在进行购房交易时,通过之前用户的相似比对,提供给用户更多选择空间。第二步,锁定了区域后,把最适合的房子匹配给用户。这种算法的前提,则是要完成大数据的原始基础积累,这是最难的,也是最核心的竞争壁垒。
自2008年起,链家就开始着手打造楼盘字典,用了8年时间,耗资近4.5亿在全国28个重点城市和地区,覆盖3亿人口的范围内,建立起一个全国最大的楼盘数据库,管理7000万房源数据。此外,链家更注重对人的大数据分析,用107个维度对用户行为进行描述,从125个维度对经纪人本身进行分析。最终形成了对房、人和交易流程的全面数据积累。
可以说,这些是链家能以大数据践行“父爱算法”的基础,别的玩家即使明白这个道理,短期内也很难做到。
2大数据3.0时代,颠覆的力量
从今天来看,链家已经不再是一个传统的房产中介,而是正逐步发展为一家名副其实的房产领域互联网化的大数据公司,并在大数据运用上加速挺进。
正是基于数据的分析和积累,链家能够践行“父爱算法”,做到更智能化的推荐,迅速对用户的真实需求做出预判,给出更合理的建议,避免在交易过程中的资源与时间的浪费,最终切实帮助用户拉近他们与未来理想家的距离。
值得关注的是,透过链家房产大数据背后,我们能看到一股颠覆的力量开始凸显。
大数据时代不止于“大”,企业对数据资产的厚度与深度的积累成为了决定大数据成败的关键。随着房、人和交易数据的不断积累以及“父爱算法”等技术的不断迭代,链家将能够为用户带来更加智能化的房屋交易体验,不仅填补了用户的需求空白,更能颠覆用户的预期。看似只是一种算法的一小步,却是房产行业的一大步。
这种论调也能找到例证,比如苹果就是创造了用户的需求,因为用户最开始也不知道自己的需求,比如Pad平板,比如触屏手机,苹果就是用产品告诉你什么叫好的选择,最终颠覆了原来的手机产品。
从另一方面来看,链家践行“父爱算法”也意味着房产大数据发展到了一个新的阶段。现实中,从2008年开始,链家就开始做互联网大数据。最开始是线上线下的简单数据的呈现、共享联动,这是原始的数据积累阶段,是大数据的1.0版本;随后到了对房产交易数据进行抓取分析,2.0后阶段;当下则是新的3.0阶段。即数据与商业深度融合,“父爱算法”下实现智能化的体验,数据分析反哺销售,产生新的增值,这就是大数据3.0时代。这将是未来大数据发展的主旋律。
不过,整体中国房地产的大数据之路,任重而道远。当前,大数据玩法在房地产行业落地少,成效不显著,所以之前万科王石直言万科人暂时不要跟他提大数据。但有一点我们必须看到,这是大势所趋,链家的做法将对整个行业产生积极的意义。
只要方向对了,怎么努力都是值得的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01