京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如果我们能说我们什么都知道,我们都会喜欢的。不幸的是,这是不可能的。有时我会告诉自己“我什么都不知道”,以此来推动自己学习,不断提高。
数据科学是那些需要不断学习的领域之一,并且总是有改进的空间。在数据科学的世界里,很难保持在事情的顶端并感到成就感。一旦你学完了一件事,并对它感到自信,你就会发现自己在寻找新的主题或领域去学习。
没人能坐在这里说他们什么都知道。你有资深的数据科学家,他们在这个领域工作了10年以上,仍然需要谷歌如何加入两个数据集。这并不意味着他们不知道它,他们可能只是在一段时间内没有使用该代码,他们已经忘记了。
一旦您开始在数据科学领域工作,您将与其他数据科学家、分析师、机器学习工程师以及更多的相互交流知识。然而,你可能不知道你的同事做的事情,反之亦然。然而,在你不知道的情况下告诉你的同事你知道一些事情,有时会损害你的信心。
如果手头的任务你不知道做可以简单地用谷歌,看一个YouTube视频,或看看堆栈溢出解决,那就太好了。但是,如果你继续不停地告诉你的同事或老板你知道一些事情,而你不知道;你会发现自己淹没在额外的学习中。相反,你可以说“对不起,但我不知道怎么做”。这样,你的同事和老板就会了解你的优势和劣势,为你提供正确的支持/培训,以便你在特定的领域有所提高。
这也适用于担任高级职务的人。如果你没有正确的技能来管理和指导一个团队,你会不知所措,压力水平会增加,这可能会让你考虑你的位置。
你的第一份工作总是让人害怕。说出自己的观点你会感到焦虑和紧张。我将介绍几点,我认为每个人都应该融入他们的工作和个人生活。
你不必事事出类拔萃。然而,要从事数据科学,你需要基本的技能。如果你是一名数据科学家,喜欢数据争论,创建数据可视化,但在构建机器学习模型方面几乎没有经验;这是你的一个弱点,你可以努力解决。向自己承认,你不会在数据科学家手中的每一项技能上都取得进步,这是成长为数据科学家的第一步。
一旦你确定了自己的长处和短处,你喜欢什么,不知道什么;你可以缩小自我发展的范围。如果你对成为机器学习工程师特别感兴趣,你作为数据科学家的技能将派上用场。然而,您需要研究诸如算法、自然语言处理、神经网络等学习领域。
你需要了解哪些技能对你的职业生涯是有益的,目前或将来。如果你的职业规划要求你使用Python和R作为编程语言,那么学习另一种语言如HTML就没有用了。你不会想做什么都是菜鸟,什么都不是高手。
如果你不问,你就得不到。数据科学家的角色需要大量的技术技能,以及软技能。这是不幸的,但许多人会认为你会知道如何做几乎所有的事情,因为你申请了一个特定的角色。我们已经知道,事实并非如此。总是有改进的空间和学习不同技能的时间。
如果工作中的一个项目有一个严格的最后期限,你被要求完成一个特定的任务来快速跟踪这个过程,然而,你不知道如何处理它,因为你不具备这些技能。你会发现自己陷入困境。从长远来看,直言不讳地告诉你的同事你能做什么和不能做什么,而不是感到紧张和羞耻,会拯救你。你可能会被分配另一项任务,其他团队成员都知道你很乐意做,以确保每个人都能在最后期限前完成。
与你的前辈谈论你的弱点,开启了一场关于自我发展的对话。公司可能希望你在这些方面有所改进,并让你接受特定的培训,或者在工作时间为你分配自我发展时间来支持你。如果一家公司能帮助你成为最好的数据科学家之一,他们会的。
另一方面,你可能会觉得分配给你的任务低于你的技能。重要的是,不要把一天的时间花在做一些简单的事情上,而这些事情对你在另一个领域有好处。这是爬上梯子最简单的方法。和你的上司谈谈你的优势,以及他们如何提高公司的效率,可以解决许多业务问题。这是一个双赢的局面。
申请合适的工作
众所周知,人们申请需要特定技能的空缺职位,但自己并不具备这些技能。如果你这样做,你就会失败。与其根据薪水来申请工作,不如根据你目前的技能来申请。
做一份入门级的工作,培养你的技能,然后从那里开始努力,并没有什么坏处。谦卑自己,量入为出是建立职业生涯的第一步。关键字是'building'。它不会交给你,所以你必须从某个地方开始。宁可从头开始工作,也不要从头上摔下来。
在线课程
有各种各样的在线课程,你可以参加,以提高和增加你的技能。您可以通过Udemy、Coursera、Udacity等学习课程。他们可以学习特定的编程语言,如Python或C++,或者理解数据库管理和SQL。
阅读
网上有很多阅读材料可以帮助你提高对各种主题的理解。教科书,学术论文在网上以及KDNuggets等平台上都可以获得,为您提供优质的资源材料来指导,帮助您理解和建立您的职业生涯。
持续学习是你的自我激励和坚持不懈的方式,以扩大你的技能和发展未来的机会,无论是个人还是专业。你可以决定有一天你对医学感兴趣,并想在该领域结合你的数据科学技能。或者,您可能想成为一名高级数据科学家,但意识到自己缺乏SQL知识。
学习永不停息。总是对自己说“我什么都不知道”;它给了你继续学习之旅的决心。知识唾手可得,如果你不利用它,你就会停留在原地。
能够谦逊自己,推动自己不断学习,这将帮助你提升自己的形象,保持相关性,为自己打开新的大门,并为意想不到的事情做好准备。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29