京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:小伍哥
来源:小伍哥聊风控
今天放假了回家过年了,分享两个看异常分布的图,很好看,也很实用。不会用或者不会画的,随时私聊我。毕竟现在过年也没啥事。
一、箱线图
箱盒图(也称盒图,箱线图等)是在1977年由美国统计学家John Tukey发明,分析数据需要为定量数据。通过箱盒图,可以直观的探索数据特征。
箱盒图共有两个用途:1)直观地识别数据中异常值(离群点);2)直观地判断数据离散分布情况,了解数据分布状态。
箱盒图共由五个数值点构成,下边缘,25%分位数(Q1),中位数,75%分位数(Q3),上边缘。其中:
1)中横线 = 中位数
2)下边缘 = Q1 – 1.5 IQR 其中:IQR=75%分位数(Q3)-25%分位数(Q1)
3)上边缘 = Q3 + 1.5 IQR
特别说明:箱盒图里面的上边缘值并非最大值,下边缘值也不是最小值。
如果数据有存在离群点即异常值,他们超出最大或者最小观察值,此时将离群点以“圆点”形式进行展示。
#安装与加载包install.packages('ggplot2') library(ggplot2)#抽样部分数据 dsmall = diamonds[sample(nrow(diamonds),5000),]#比较基础的图形 ggplot(dsmall,aes(x=color,y=price,fill=color))+
geom_boxplot()+
scale_fill_manual(values=c('blue','cyan', 'yellow', 'orange', 'red', 'Cyan1', 'DeepPink1'))+
facet_grid(.~clarity )
ggplot(mpg,aes(x=trans,y=displ,fill=trans))+theme_bw()
+geom_boxplot()+theme(plot.title =element_text(size=20,face="bold",
color="red", hjust=0.5,vjust=0.5,lineheight=0.01,family="myFont"),
#axis.title.x=element_text(size=12,face="bold",color="black",hjust=0.5),
axis.title.y=element_text(size=12,face="bold",color="black",hjust=0.5),
#axis.text.x =element_text(size=08,face="plain",color="black",angle=90,vjust=0.5,lineheight=0.01,family="myFont"),
axis.text.y =element_text(size=08,face="plain",color="black",family="myFont"),
panel.grid=element_blank(),
panel.background = element_blank(), legend.position='none')
业务中的一些图,不同类目的商品价格,不同城市的消费水平等等,基本上能够一目了然的发现问题。是一个既实用又装逼的图,大家可以试试。
二、密度图
qplot(carat,data = dsmall,geom = c('density'),
fill = cut,colour = cut)
qplot(depth,data = dsmall,geom = c('density'),fill = cut,
colour = cut,alpha = I(2/10))
qplot(depth,data = dsmall,geom = c('density'),
fill = cut,colour = cut,alpha = I(2/10))
业务中的一些数据对比,为黑白样本同一个特征的分布对比,可以看到有比较大的不同
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26