
作者:小伍哥
来源:小伍哥聊风控
今天放假了回家过年了,分享两个看异常分布的图,很好看,也很实用。不会用或者不会画的,随时私聊我。毕竟现在过年也没啥事。
一、箱线图
箱盒图(也称盒图,箱线图等)是在1977年由美国统计学家John Tukey发明,分析数据需要为定量数据。通过箱盒图,可以直观的探索数据特征。
箱盒图共有两个用途:1)直观地识别数据中异常值(离群点);2)直观地判断数据离散分布情况,了解数据分布状态。
箱盒图共由五个数值点构成,下边缘,25%分位数(Q1),中位数,75%分位数(Q3),上边缘。其中:
1)中横线 = 中位数
2)下边缘 = Q1 – 1.5 IQR 其中:IQR=75%分位数(Q3)-25%分位数(Q1)
3)上边缘 = Q3 + 1.5 IQR
特别说明:箱盒图里面的上边缘值并非最大值,下边缘值也不是最小值。
如果数据有存在离群点即异常值,他们超出最大或者最小观察值,此时将离群点以“圆点”形式进行展示。
#安装与加载包install.packages('ggplot2') library(ggplot2)#抽样部分数据 dsmall = diamonds[sample(nrow(diamonds),5000),]#比较基础的图形 ggplot(dsmall,aes(x=color,y=price,fill=color))+
geom_boxplot()+
scale_fill_manual(values=c('blue','cyan', 'yellow', 'orange', 'red', 'Cyan1', 'DeepPink1'))+
facet_grid(.~clarity )
ggplot(mpg,aes(x=trans,y=displ,fill=trans))+theme_bw()
+geom_boxplot()+theme(plot.title =element_text(size=20,face="bold",
color="red", hjust=0.5,vjust=0.5,lineheight=0.01,family="myFont"),
#axis.title.x=element_text(size=12,face="bold",color="black",hjust=0.5),
axis.title.y=element_text(size=12,face="bold",color="black",hjust=0.5),
#axis.text.x =element_text(size=08,face="plain",color="black",angle=90,vjust=0.5,lineheight=0.01,family="myFont"),
axis.text.y =element_text(size=08,face="plain",color="black",family="myFont"),
panel.grid=element_blank(),
panel.background = element_blank(), legend.position='none')
业务中的一些图,不同类目的商品价格,不同城市的消费水平等等,基本上能够一目了然的发现问题。是一个既实用又装逼的图,大家可以试试。
二、密度图
qplot(carat,data = dsmall,geom = c('density'),
fill = cut,colour = cut)
qplot(depth,data = dsmall,geom = c('density'),fill = cut,
colour = cut,alpha = I(2/10))
qplot(depth,data = dsmall,geom = c('density'),
fill = cut,colour = cut,alpha = I(2/10))
业务中的一些数据对比,为黑白样本同一个特征的分布对比,可以看到有比较大的不同
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08