京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“大数据”这个术语是无处不在的。无论是大企业还是小企业,新兴企业抑或是传统企业,都正在参与着这个“游戏”。海量的用户数据正在被各个网站大规模收集利用,有的公司为了能与客户交流,甚至不惜利用庞大的文本交流数据建立算法。
但实际上,我们对大数据的痴迷,往往也会产生误导。是的,在某些情况下,从数据中确实能够获取到有价值的东西,但其实数据的大小并不是最关键的因素,找到正确的数据才是关键。
无关乎数据的大或小
在运用大数据方面,Uber可以说是一个典型的成功案例。毫无疑问,Uber捕获了大量的信息。依靠他们的应用, Uber可以从司机和乘客那里获得实时的数据,便于他们清楚的分析出在何时何地人们对于车辆会有较高的需求。
在上个时代,我们更多使用的是传统的出租车,而不是现在只需一个按钮就能召唤的。那时出租车在很大程度上未连接到互联网或任何形式的正式的计算机基础设施,但实际上他们才是大数据的玩家,为什么这么说?因为传统的出租车依赖的是人眼网络,即司机通过双眼在城市周围移动,通过扫描人形图像、双臂伸出的动作进行准确判断,快速锁定目标。通过大脑的计算,收集分析数据得出结论。
Uber的成功不是依靠他们所采集的大量数据,而是源于非常不同的东西: 它要的仅仅是一些小的,简单的车辆调度数据。Uber的解决方案是停止对视觉数据运行生物异常检测算法,而是只需要正确的数据来完成工作。城市里的人需要搭车,他们在哪里?这些关键信息让Uber、Lyft、滴滴出行革命了一个行业。
为工作获得正确的数据
正确的数据有时候量会很大,有时候又会很小,但这不重要,对于创新者而言,关键是要搞清楚哪些数据才是企业真正需要的,要想找到正确的数据,建议你考虑以下三个问题:
问题1 :是什么在浪费企业的资源?
大多数企业在日常运营中都有着大量的资源浪费。以花卉零售为例,平均下来看,在大多数花店中的库存会有50%的腐败率,也就是说会有近一半的资源会被浪费掉。因此产生了UrbanStems和Bouqs这样的创新的鲜花配送服务,因为他们可以通过正确的数据来帮助花店减少浪费。
以哈佛商学院的本·埃德尔曼的话来说,“浪费就是机会,” 无论是在工业生产、零售、或是法务调查中,一定要找出浪费你资源的因素,引导它走向正确的数据。无论是简单的识别还是商业模式中隐含的决定。
问题2:如何通过自动化来减少资源浪费?
在确定哪些因素会造成资源浪费之后,下一步就是要减少浪费。
但是,当涉及到简单的,重复的操作决定时,(例如,在哪里派车,如何给产品定价,或者一家花店有多少鲜花),机器往往比人们做的更好。二十世纪的许多商业模式都是基于对人类控制决定的,但是我们今天识别确定数据可以通过更多的自动化进行。
传言称亚马逊正在打算淘汰其所有的定价团队,让算法来取代。在大多数零售商眼里,这是完全不可思议的行为。但是如果亚马逊的算法能够胜任这份工作,那么它将会为亚马逊减少成本和库存,并将推出更好的具有可预测性的新产品,而这将会带来巨大的竞争优势。
问题3:你需要什么样的数据?
一旦你有了对系统中资源浪费的理解,并能够预判出浪费导致的结果,那么,最后一步是问一个简单的问题:什么可以帮助你做出完美决定?
对于Uber来说,他们需要知道潜在乘客的位置所在,便于快速完成自动化指派司机的决策,以减少司机寻找下一个乘客造成的资源浪费。对于互联网软件Predix来说,他们希望提前准确知道机器崩溃的时间,通过自动化以减少成本维护及非计划宕机造成的各种浪费。对于寻求降低成本的保险公司来说,他们希望知道的是当一个糖尿病患者血糖下降至危险边缘时,有助于自动化决策的干预措施,以减少管理不善的浪费。
这些就是你所要找出来的正确数据。 如果你能通过掌握大量的信息找到他们将是非常好的。 如果你通过构建一个新的应用程序来感知捕获他们将是更好的。
大多数公司花费了太多的时间在倡导大数据上,但是却并没有用足够的时间去思考对于他们而言什么才是真正有价值的数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13