京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“大数据”这个术语是无处不在的。无论是大企业还是小企业,新兴企业抑或是传统企业,都正在参与着这个“游戏”。海量的用户数据正在被各个网站大规模收集利用,有的公司为了能与客户交流,甚至不惜利用庞大的文本交流数据建立算法。
但实际上,我们对大数据的痴迷,往往也会产生误导。是的,在某些情况下,从数据中确实能够获取到有价值的东西,但其实数据的大小并不是最关键的因素,找到正确的数据才是关键。
无关乎数据的大或小
在运用大数据方面,Uber可以说是一个典型的成功案例。毫无疑问,Uber捕获了大量的信息。依靠他们的应用, Uber可以从司机和乘客那里获得实时的数据,便于他们清楚的分析出在何时何地人们对于车辆会有较高的需求。
在上个时代,我们更多使用的是传统的出租车,而不是现在只需一个按钮就能召唤的。那时出租车在很大程度上未连接到互联网或任何形式的正式的计算机基础设施,但实际上他们才是大数据的玩家,为什么这么说?因为传统的出租车依赖的是人眼网络,即司机通过双眼在城市周围移动,通过扫描人形图像、双臂伸出的动作进行准确判断,快速锁定目标。通过大脑的计算,收集分析数据得出结论。
Uber的成功不是依靠他们所采集的大量数据,而是源于非常不同的东西: 它要的仅仅是一些小的,简单的车辆调度数据。Uber的解决方案是停止对视觉数据运行生物异常检测算法,而是只需要正确的数据来完成工作。城市里的人需要搭车,他们在哪里?这些关键信息让Uber、Lyft、滴滴出行革命了一个行业。
为工作获得正确的数据
正确的数据有时候量会很大,有时候又会很小,但这不重要,对于创新者而言,关键是要搞清楚哪些数据才是企业真正需要的,要想找到正确的数据,建议你考虑以下三个问题:
问题1 :是什么在浪费企业的资源?
大多数企业在日常运营中都有着大量的资源浪费。以花卉零售为例,平均下来看,在大多数花店中的库存会有50%的腐败率,也就是说会有近一半的资源会被浪费掉。因此产生了UrbanStems和Bouqs这样的创新的鲜花配送服务,因为他们可以通过正确的数据来帮助花店减少浪费。
以哈佛商学院的本·埃德尔曼的话来说,“浪费就是机会,” 无论是在工业生产、零售、或是法务调查中,一定要找出浪费你资源的因素,引导它走向正确的数据。无论是简单的识别还是商业模式中隐含的决定。
问题2:如何通过自动化来减少资源浪费?
在确定哪些因素会造成资源浪费之后,下一步就是要减少浪费。
但是,当涉及到简单的,重复的操作决定时,(例如,在哪里派车,如何给产品定价,或者一家花店有多少鲜花),机器往往比人们做的更好。二十世纪的许多商业模式都是基于对人类控制决定的,但是我们今天识别确定数据可以通过更多的自动化进行。
传言称亚马逊正在打算淘汰其所有的定价团队,让算法来取代。在大多数零售商眼里,这是完全不可思议的行为。但是如果亚马逊的算法能够胜任这份工作,那么它将会为亚马逊减少成本和库存,并将推出更好的具有可预测性的新产品,而这将会带来巨大的竞争优势。
问题3:你需要什么样的数据?
一旦你有了对系统中资源浪费的理解,并能够预判出浪费导致的结果,那么,最后一步是问一个简单的问题:什么可以帮助你做出完美决定?
对于Uber来说,他们需要知道潜在乘客的位置所在,便于快速完成自动化指派司机的决策,以减少司机寻找下一个乘客造成的资源浪费。对于互联网软件Predix来说,他们希望提前准确知道机器崩溃的时间,通过自动化以减少成本维护及非计划宕机造成的各种浪费。对于寻求降低成本的保险公司来说,他们希望知道的是当一个糖尿病患者血糖下降至危险边缘时,有助于自动化决策的干预措施,以减少管理不善的浪费。
这些就是你所要找出来的正确数据。 如果你能通过掌握大量的信息找到他们将是非常好的。 如果你通过构建一个新的应用程序来感知捕获他们将是更好的。
大多数公司花费了太多的时间在倡导大数据上,但是却并没有用足够的时间去思考对于他们而言什么才是真正有价值的数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31