
CDA数据分析师 出品
作者:曹鑫
编辑:JYD
我真遇到了上百万行的 Excel
年底到了,我想把公司历年的销售明细和指标等业务数据放在一起透视做分析,觉得这样很方便,但是无奈一张表就50多万行,好几年的数据加在一起有两三百万行,受 excel行数限制,我只能将数据按年分开,一年一张表,每张表里的表头项目都是一样的。
业务发展越来越大,数据的规模会越来越大,在初期的时候,还觉得Excel 够用了,但是当 Excel 规模的数据量不断增加,我们开始发现打开 Excel 越来越慢,操作一下 Excel 要等很久。
直接双击打开?
最简单的方法,当然是双击打开,当你双击下去,看着鼠标变成旋转的模式,你就陷入了无尽的等待,听着电脑的机声音越来越大,最后还没打开,电脑和我就都崩溃了。这完全没法开展下一步的数据分析⼯作了,怎么办?
Access
首先想到的是个比较冷门,但又没那么冷门,好像学过,但又好像没用过,好像很难,但其实也没那么难的软件:Access。
Access 导入 Excel 数据的操作很直观,打开 Access,点击「外部数据」-「新数据源」-「从文件」-「Excel」,按照指引一步步操作下去即可,而且 Access 也支持新表追加到旧表的后面,可以把几十万的表一张张拼接到一起。但估计你现在电脑里还有没有Access还不一定。
PowerBI
同样是微软出品的软件,现在更流行,你还可以选择 PowerBI 的一系列组合软件。
从Excel2010开始,微软推出了一个叫Power Query的插件,可以弥补Excel的不足,处理数据的能力边界大大提升,Excel2013也同样可以使用,现在还在用Excel2010和 2013的同学可以从微软官网下载powerquery插件使用。
而到了Excel2016,微软直接把PQ的功能嵌入进来,放在数据选项卡下。
首先我们使用Excel2016打开一个空白的Excel工作簿文件,依次点击“数据/从文件/从工作簿”,在导航器界面,左侧列出了所有工作表,我们这个不是一个个去勾选加载,如果表很多,那么勾起来太麻烦,直接选任一个表,点击“转换数据”按钮,进入Power Query管理界面即可。
都说到这份儿上了,Python 党得出来说两句了:上百万行的数据还放在excel里面?!别说处理了,你连打开有时候可能都是问题。这种情况下最根本的办法了就是存入数据库然后再处理,即使再不济也可以放入access。可能有人会说可以是使用 power query或者power pivot来处理,但是,实际情况是这么大的数据量,PowerBI也很吃力。
那用 Python 试试?
Python 读取百万行的 Excel 大概要花费5分钟(以我以前的电脑配置 16GB 内存),如果你的配置更好,当然会更快,代码也很简单,如下图:
1.导入 pandas 包, import pandas as pd ,是最常用的数据处理包。
2.使入 pd.read_excel() 读取 test4.xlsx 文件,读取 Excel 有直接写好的方法。
3.使入 df.head() 查看一下前五行。
最终花了 5 分钟,才把这份 50 万行 50 列的数据打开了。虽然比起双击打开是要快一点的(至少打开了),但是还不满足,有没有更快的方式?这时候,就要开始跳出Excel,开始思考其他一些更高效的数据格式。
更高效的数据格式
CSV 格式
CSV文件,是一种以纯文本形式存储表格数据的简单文件格式。在CSV中,每列数据由特殊分隔符分割(如逗号,分号或制表符),用 Python 来读取都非常方便,只要格式规整,用 Pandas 里面的 read_csv 可以快速读取以上格式文件,在我的电脑上,同样是 50 万行 50 列的数据,原来打开要花 5 分钟,现在只花了 5 秒钟,速度提升了60倍:
Pickle 格式
当然 Python 里面还引入了其他的格式,你可能平时接触的不多,但是效果绝对让你惊喜。比如将数据存储为 pkl 的格式,"pickling" 是将 Python 对象及其所拥有的层次结构转化为一个字节流的过程。
我们来看看读取的速度,打开速度一下子提升到500毫秒。
从5分钟,到5秒钟,到500毫秒,没有最快只有更快。
随着业务扩展,数据量一定会越来越大。你也会面临着数据量越来越大,处理的效率越来越慢的问题。我们思考问题的路径就可以从软件 Access、PowerBI,到编程语言 Python,再到文件格式 Excel、CSV、Pickle,一路解决下去。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18CDA 培训:开启数据分析师职业大门的钥匙 在大数据时代,数据分析师已成为各行业竞相争夺的关键人才。CDA(Certified Data ...
2025-06-18CDA 人才招聘市场分析:机遇与挑战并存 在数字化浪潮席卷各行业的当下,数据分析能力成为企业发展的核心竞争力之一,持有 C ...
2025-06-17CDA金融大数据案例分析:驱动行业变革的实践与启示 在金融行业加速数字化转型的当下,大数据技术已成为金融机构提升 ...
2025-06-17CDA干货:SPSS交叉列联表分析规范与应用指南 一、交叉列联表的基本概念 交叉列联表(Cross-tabulation)是一种用于展示两个或多 ...
2025-06-17TMT行业内审内控咨询顾问 1-2万 上班地址:朝阳门北大街8号富华大厦A座9层 岗位描述 1、为客户提供高质量的 ...
2025-06-16一文读懂 CDA 数据分析师证书考试全攻略 在数据行业蓬勃发展的今天,CDA 数据分析师证书成为众多从业者和求职者提升竞争力的重要 ...
2025-06-16数据分析师:数字时代的商业解码者 在数字经济蓬勃发展的今天,数据已成为企业乃至整个社会最宝贵的资产之一。无论是 ...
2025-06-16解锁数据分析师证书:开启数字化职业新篇 在数字化浪潮汹涌的当下,数据已成为驱动企业前行的关键要素。从市场趋势研判、用 ...
2025-06-16CDA 数据分析师证书含金量几何?一文为你讲清楚 在当今数字化时代,数据成为了企业决策和发展的重要依据。数据分析师这一职业 ...
2025-06-13CDA 数据分析师:数字化时代的关键人才 在当今数字化浪潮席卷全球的时代,数据已然成为驱动企业发展、推动行业变革的核心要素。 ...
2025-06-13CDA 数据分析师报考条件全解析 在大数据和人工智能时代,数据分析师成为了众多行业追捧的热门职业。CDA(Certified Data Analyst ...
2025-06-13“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-09