作者:Python进阶者
来源:Python爬虫与数据挖掘
前几天有个叫【小明】的粉丝在问了一道关于Python处理文本可视化+语义分析的问题。
他要构建语料库,目前通过Python网络爬虫抓到的数据存在一个csv文件里边,现在要把数据放进txt里,表示不会,然后还有后面的词云可视化,分词,语义分析等,都不太会。
内容稍微有点多,大体思路如下,先将csv中的文本取出,之后使用停用词做分词处理,再做词云图,之后做情感分析。
1、将csv文件中的文本逐行取出,存新的txt文件,这里运行代码《读取csv文件中文本并存txt文档.py》进行实现,得到文件《职位表述文本.txt》
2、运行代码《使用停用词获取最后的文本内容.py》,得到使用停用词获取最后的文本内容,生成文件《职位表述文本分词后_outputs.txt》
4、运行代码《jieba分词并统计词频后输出结果到Excel和txt文档.py》,得到《wordCount_all_lyrics.xls》和《分词结果.txt》文件,将《分词结果.txt》中的统计值可以去除,生成《情感分析用词.txt》,给第五步情感分析做准备
5、运行代码《情感分析.py》,得到情感分析的统计值,取平均值可以大致确认情感是正还是负。
1.将csv文件中的文本逐行取出,存新的txt文件
这里运行代码《读取csv文件中文本并存txt文档.py》进行实现,得到文件《职位表述文本.txt》,代码如下。
# coding: utf-8
import pandas as pd
df = pd.read_csv('./职位描述.csv', encoding='gbk')
# print(df.head())
for text in df['Job_Description']:
# print(text)
if text is not None:
with open('职位表述文本.txt', mode='a', encoding='utf-8') as file:
file.write(str(text))
print('写入完成')
2.使用停用词获取最后的文本内容
运行代码《使用停用词获取最后的文本内容.py》,得到使用停用词获取最后的文本内容,生成文件《职位表述文本分词后_outputs.txt》,代码如下:
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import jieba
# jieba.load_userdict('userdict.txt')
# 创建停用词list
def stopwordslist(filepath):
stopwords = [line.strip() for line in open(filepath, 'r', encoding='utf-8').readlines()]
return stopwords
# 对句子进行分词
def seg_sentence(sentence):
sentence_seged = jieba.cut(sentence.strip())
stopwords = stopwordslist('stop_word.txt') # 这里加载停用词的路径
outstr = ''
for word in sentence_seged:
if word not in stopwords:
if word != 't':
outstr += word
outstr += " "
return outstr
inputs = open('职位表述文本.txt', 'r', encoding='utf-8')
outputs = open('职位表述文本分词后_outputs.txt', 'w', encoding='utf-8')
for line in inputs:
line_seg = seg_sentence(line) # 这里的返回值是字符串
outputs.write(line_seg + 'n')
outputs.close()
inputs.close()
关键节点,都有相应的注释,你只需要替换对应的txt文件即可,如果有遇到编码问题,将utf-8改为gbk即可解决。
3.制作词云图
运行代码《指定txt词云图.py》,可以得到词云图,代码如下:
from wordcloud import WordCloud
import jieba
import numpy
import PIL.Image as Image
def cut(text):
wordlist_jieba=jieba.cut(text)
space_wordlist=" ".join(wordlist_jieba)
return space_wordlist
with open(r"C:UserspdcfiDesktopxiaoming职位表述文本.txt" ,encoding="utf-8")as file:
text=file.read()
text=cut(text)
mask_pic=numpy.array(Image.open(r"C:UserspdcfiDesktopxiaomingpython.png"))
wordcloud = WordCloud(font_path=r"C:/Windows/Fonts/simfang.ttf",
collocations=False,
max_words= 100,
min_font_size=10,
max_font_size=500,
mask=mask_pic).generate(text)
image=wordcloud.to_image()
# image.show()
wordcloud.to_file('词云图.png') # 把词云保存下来
如果想用你自己的图片,只需要替换原始图片即可。这里使用Python底图做演示,得到的效果如下:
4.分词统计
运行代码《jieba分词并统计词频后输出结果到Excel和txt文档.py》,得到《wordCount_all_lyrics.xls》和《分词结果.txt》文件,将《分词结果.txt》中的统计值可以去除,生成《情感分析用词.txt》,给第五步情感分析做准备,代码如下:
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
import sys
import jieba
import jieba.analyse
import xlwt # 写入Excel表的库
# reload(sys)
# sys.setdefaultencoding('utf-8')
if __name__ == "__main__":
wbk = xlwt.Workbook(encoding='ascii')
sheet = wbk.add_sheet("wordCount") # Excel单元格名字
word_lst = []
key_list = []
for line in open('职位表述文本.txt', encoding='utf-8'): # 需要分词统计的原始目标文档
item = line.strip('nr').split('t') # 制表格切分
# print item
tags = jieba.analyse.extract_tags(item[0]) # jieba分词
for t in tags:
word_lst.append(t)
word_dict = {}
with open("分词结果.txt", 'w') as wf2: # 指定生成文件的名称
for item in word_lst:
if item not in word_dict: # 统计数量
word_dict[item] = 1
else:
word_dict[item] += 1
orderList = list(word_dict.values())
orderList.sort(reverse=True)
# print orderList
for i in range(len(orderList)):
for key in word_dict:
if word_dict[key] == orderList[i]:
wf2.write(key + ' ' + str(word_dict[key]) + 'n') # 写入txt文档
key_list.append(key)
word_dict[key] = 0
for i in range(len(key_list)):
sheet.write(i, 1, label=orderList[i])
sheet.write(i, 0, label=key_list[i])
wbk.save('wordCount_all_lyrics.xls') # 保存为 wordCount.xls文件
得到的txt和excel文件如下所示:
5.情感分析的统计值
运行代码《情感分析.py》,得到情感分析的统计值,取平均值可以大致确认情感是正还是负,代码如下:
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from snownlp import SnowNLP
# 积极/消极
# print(s.sentiments) # 0.9769551298267365 positive的概率
def get_word():
with open("情感分析用词.txt", encoding='utf-8') as f:
line = f.readline()
word_list = []
while line:
line = f.readline()
word_list.append(line.strip('rn'))
f.close()
return word_list
def get_sentiment(word):
text = u'{}'.format(word)
s = SnowNLP(text)
print(s.sentiments)
if __name__ == '__main__':
words = get_word()
for word in words:
get_sentiment(word)
# text = u'''
# 也许
# '''
# s = SnowNLP(text)
# print(s.sentiments)
# with open('lyric_sentiments.txt', 'a', encoding='utf-8') as fp:
# fp.write(str(s.sentiments)+'n')
# print('happy end')
基于NLP语义分析,程序运行之后,得到的情感得分值如下图所示:
将得数取平均值,一般满足0.5分以上,说明情感是积极的,这里经过统计之后,发现整体是积极的。
我是Python进阶者。本文基于粉丝提问,针对一次文本处理,手把手教你对抓取的文本进行分词、词频统计、词云可视化和情感分析,算是完成了一个小项目了。下次再遇到类似这种问题或者小的课堂作业,不妨拿本项目练练手,说不定有妙用噢,拿个高分不在话下!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03