京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS详细操作:多个独立样本列联表的卡方检验
上一期我们聊到了独立样本四格表的卡方检验,实际上临床也经常会遇到分组超过2个的计数资料,这一期我们来一起搞定多个独立样本列联表的χ2检验。
一、问题与数据
以下是胃癌真菌病因研究中3种食物样品的真菌检出率,比较3个检出率有无差异。
表1 物种食物样品的真菌检出率
二、对数据结构的分析
本例是独立四格表χ2检验的拓展,由两个分组增加到多个分组,分析思路与四格表χ2检验类同,需要注意的是,这里我们不光想知道多个分组间有无差异,如果差异存在统计学意义,那么具体到组间两两比较是否均存在差异。
三、SPSS分析方法
多个独立样本列联表χ2检验的SPSS操作与四格表一样,这里不再赘述(忘记的小伙伴赶快戳SPSS详细操作:独立样本四格表的χ2检验,复习一下)。需要注意的是,不同于四格表χ2检验,SPSS对于R*C列联表χ2检验不会自动输出Fisher确切概率检验结果,如果样本例数较少,建议在Exact设置中勾选Exact(如下图)。
四、结果解读
表2 统计汇总
表3 卡方检验结果
多个独立样本列联表χ2检验的结果选择:
1、所有理论频数≥5,看Pearson Chi-Square的结果;
2、超过20%的理论频数<5或至少1个理论频数<1,看Fisher’s Exact Test结果(也可以考虑增加样本量或者依据专业判断适当合并行或列,再进行χ2检验)。
本例中SPSS提示没有理论频数小于5,且最小的理论频数为8.00,故直接选择Pearson Chi-Square结果,即χ2=22.841,P<0.001,提示三种食物中真菌检出率不同。
五、组间的两两比较
通过上述χ2检验,明确了三种食物的真菌检出率并不相同,此时我们还需要进一步考虑三种食物真菌检出率到底谁与谁之间的差异存在统计学意义,这里就需要用到“卡方分割”,通俗讲就是把R*C列联表拆分成若干个四个表分别进行χ2检验,进而判断不同组两两比较差异是否用统计学意义,但是,因为多组比较可能会增加犯I类错误概率,所以还需要对χ2检验的P值进行校正,这里主要介绍 Bonferroni校正。
本例中需要进行3次两两比较,校正的检验水准α=0.05/比较次数=0.05/3=0.0167。
到这里,有的小伙伴要问了,SPSS数据库中原来有3组,怎么才能方便地构造任意两组的“四格表”,进行χ2检验呢?这里教大家一个SPSS中比较实用的小技巧——选择特定对象进行统计分析。
A、菜单的Data中找到Select Cases
B、Select Cases中提供了多种用于选择研究对象的方式 ,这里我们将用到条件筛选(如下图)
C、条件筛选中提供了丰富的筛选公式,假如想选择1-大米和2-地瓜粉,可以做如下图设置,“食物=1|食物=2”,这里“|”代表“或者”,即数据库只要有1或者2都会被选中进行统计分析→Continue。
按照上面介绍的小技巧,我们就可以进行任意两组的四格表χ2检验(表4)
表4. 不同食物真菌检出率比较
如上表,按照校正的检验水准α=0.0167,大米和地瓜粉,大米和豆酱之间的真菌检出率差异具有统计学意义,而地瓜粉和豆酱之间差异无统计学意义。
六、撰写结论
大米、地瓜粉和豆酱的真菌检出率并不相同(χ2=22.841,P<0.001),其中地瓜粉最高为96.7%,其次为豆酱为80.0%,大米最低为43.3%。大米的真菌检出率分别与地瓜粉和豆酱相比差异均有统计学意义(Bonferroni校正,P<0.0167),而地瓜粉和豆酱之间真菌检查率差异无统计学意义(Bonferroni校正,P>0.0167)。
PS: 多个独立样本的χ2检验除了包含上述R*2列联表卡方检验外,还包含R*C卡方检验,即我们考虑的指标变量为多分类(例如血型),其统计分析思路和SPSS操作分析与R*2列联表卡方检验一致,这里不再赘述。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30