
SPSS详细操作:多个独立样本列联表的卡方检验
上一期我们聊到了独立样本四格表的卡方检验,实际上临床也经常会遇到分组超过2个的计数资料,这一期我们来一起搞定多个独立样本列联表的χ2检验。
一、问题与数据
以下是胃癌真菌病因研究中3种食物样品的真菌检出率,比较3个检出率有无差异。
表1 物种食物样品的真菌检出率
二、对数据结构的分析
本例是独立四格表χ2检验的拓展,由两个分组增加到多个分组,分析思路与四格表χ2检验类同,需要注意的是,这里我们不光想知道多个分组间有无差异,如果差异存在统计学意义,那么具体到组间两两比较是否均存在差异。
三、SPSS分析方法
多个独立样本列联表χ2检验的SPSS操作与四格表一样,这里不再赘述(忘记的小伙伴赶快戳SPSS详细操作:独立样本四格表的χ2检验,复习一下)。需要注意的是,不同于四格表χ2检验,SPSS对于R*C列联表χ2检验不会自动输出Fisher确切概率检验结果,如果样本例数较少,建议在Exact设置中勾选Exact(如下图)。
四、结果解读
表2 统计汇总
表3 卡方检验结果
多个独立样本列联表χ2检验的结果选择:
1、所有理论频数≥5,看Pearson Chi-Square的结果;
2、超过20%的理论频数<5或至少1个理论频数<1,看Fisher’s Exact Test结果(也可以考虑增加样本量或者依据专业判断适当合并行或列,再进行χ2检验)。
本例中SPSS提示没有理论频数小于5,且最小的理论频数为8.00,故直接选择Pearson Chi-Square结果,即χ2=22.841,P<0.001,提示三种食物中真菌检出率不同。
五、组间的两两比较
通过上述χ2检验,明确了三种食物的真菌检出率并不相同,此时我们还需要进一步考虑三种食物真菌检出率到底谁与谁之间的差异存在统计学意义,这里就需要用到“卡方分割”,通俗讲就是把R*C列联表拆分成若干个四个表分别进行χ2检验,进而判断不同组两两比较差异是否用统计学意义,但是,因为多组比较可能会增加犯I类错误概率,所以还需要对χ2检验的P值进行校正,这里主要介绍 Bonferroni校正。
本例中需要进行3次两两比较,校正的检验水准α=0.05/比较次数=0.05/3=0.0167。
到这里,有的小伙伴要问了,SPSS数据库中原来有3组,怎么才能方便地构造任意两组的“四格表”,进行χ2检验呢?这里教大家一个SPSS中比较实用的小技巧——选择特定对象进行统计分析。
A、菜单的Data中找到Select Cases
B、Select Cases中提供了多种用于选择研究对象的方式 ,这里我们将用到条件筛选(如下图)
C、条件筛选中提供了丰富的筛选公式,假如想选择1-大米和2-地瓜粉,可以做如下图设置,“食物=1|食物=2”,这里“|”代表“或者”,即数据库只要有1或者2都会被选中进行统计分析→Continue。
按照上面介绍的小技巧,我们就可以进行任意两组的四格表χ2检验(表4)
表4. 不同食物真菌检出率比较
如上表,按照校正的检验水准α=0.0167,大米和地瓜粉,大米和豆酱之间的真菌检出率差异具有统计学意义,而地瓜粉和豆酱之间差异无统计学意义。
六、撰写结论
大米、地瓜粉和豆酱的真菌检出率并不相同(χ2=22.841,P<0.001),其中地瓜粉最高为96.7%,其次为豆酱为80.0%,大米最低为43.3%。大米的真菌检出率分别与地瓜粉和豆酱相比差异均有统计学意义(Bonferroni校正,P<0.0167),而地瓜粉和豆酱之间真菌检查率差异无统计学意义(Bonferroni校正,P>0.0167)。
PS: 多个独立样本的χ2检验除了包含上述R*2列联表卡方检验外,还包含R*C卡方检验,即我们考虑的指标变量为多分类(例如血型),其统计分析思路和SPSS操作分析与R*2列联表卡方检验一致,这里不再赘述。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14