京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA数据分析师 出品
编译:Mika
【导读】
你是否想搜索地球表面的实时影像?Marshall和他在Planet的团队将使用世界上最大的卫星群每天拍摄整个地球的图像。现在他们正在进行一个新的项目:使用人工智能对地球上所有的物体进行索引——这可以使船只、树木、房屋和地球上的一切东西都可以搜索,就像谷歌等搜索引擎一样。
4年前就在TED的讲台上,我公布了地球任务1号:
发射一系列卫星,从而能每天拍摄地球全貌,并让大众能获得这些信息。
我们要解决的问题很简单。在网上,你能找到的卫星图片很旧了,甚至早就过时了。但是人类活动每时每刻、每天、每周、每月都在发生。
我们不能解决自己看不见的问题,我们想要给人们工具去看见变化,并且采取行动。
阿波罗17号的宇航员在1972年照下了美丽的蓝色星球图片,这帮助人们了解到我们生活在一个脆弱的星球上。
因此我们想要继续这项事业,为人们提供保护地球的工具。
在完成了多个我们自己的阿波罗任务,发射了人类历史上数量最多的一组卫星后,我们完成了既定目标。
今天,Planet每天都在记录着地球的全貌,任务完成!
这个任务完成了21次火箭发射。这个图让整个过程看起来很轻松,但事实并非如此。
现在我们有超过200个卫星在轨道上环绕运行,将搜集到的数据发送到31个全球站点。
每天,我们总计得到150万张,共计29兆像素的地球表面图片。并且,在地球表面任意一点,我们现在拥有平均超过500张图片。
这些巨大的数据记录着巨大的改变,很多人在使用这些图片。
农业企业用他们来提高农民的产量;商业地图公司用他们来提高地图的精度;政府用他们来监管边疆安全,或是应对自然灾害,比如洪水、火灾或地震;很多非政府组织也在用它们,去追踪并阻止森林砍伐,帮助找到逃离缅甸的难民,或追踪叙利亚危机中的活动,以令各方势力负责。
今天我有幸能够宣布Planet stories的上线,任何人都可以登陆planet.com,创建一个账户,就能在网上看到所有的图片。
这相当于一个实时版的Google Earth,你还可以看到历史数据。你可以比较任何两天,然后发现我们的星球发生的巨大改变。或者你可以用这500张照片创造一个延时视频,去显示该地点随着时间发生的巨大变化。你还可以把它们分享到社交网络上,这很酷。
我们最初为新闻工作者创造了这个工具,为了让他们得到对于世界不带偏见的信息。但现在我们把它向公众开放,用于非盈利或个人用途。
我们希望这个工具能够让人们发现地球发生的变化,并做出改变。
那么人类现在有了这个不断变化的地球数据库,我们的下一个任务是什么呢?
简而言之,就是空间加上人工智能。
我们利用人工智能检索卫星图片中的事物。网上用来在视频中标记猫狗的AI工具,同样可以用来处理我们的照片。
想象这里有艘船,这里有棵树,这是辆车,这是条路,这是个大楼,这是个卡车。
如果你能够对每天产生的几百万张图片,这样处理就基本上创造出了一个数据库。当中包含了地球上每天存在的有形事物,并且这个数据库是可以被搜索的。
这就是我们在做的事。这是一个使用了我们API的原型。
这是北京,如果我们想要统计机场的飞机数量,只需要选择机场,程序就会检索出今天照片中的飞机和以前所有照片中的飞机。然后它生成了这张标记了北京机场飞机的统计图。当然,你可以对世界上任何一个机场这样操作。
让我们来看看温哥华的一个港口,我们用同样的流程来统计船只。放大并选中温和华,搜索这片区域,然后我们搜索船只,就会得到船只的情况。
想象一下这将为负责追踪并组织非法捕鱼的海岸保卫人员提供多么大的帮助。合法的捕鱼船只,用AIS灯塔传达他们的位置。但我们经常发现违反规则的船只,图片不会撒谎。所以海岸保卫人员可以利用这个信息来发现非法船只。
我们将会很快加入不局限于飞机、船只的其他对象,并且我们可以生成这些地点的对象数据流。
从人们的工作流程中进行数字化集成,未来我们还可以建立一个更复杂的浏览器,让人们放入不同来源的信息。
但是最终,我们可以把图像完全抽象化,产生一个可检索的地球表面界面。
想象一下我们可以这样问:
“巴基斯坦有多少栋楼房?对时间做个统计图。” “亚马逊有多少树?还有从上周到这周倒下的树的地点?”
这不是很棒吗?这就是我们想要达到的目标,我们叫它“可检索地球”。
地球任务1号负责每天记录地球表面的图像,并对大众开放。
地球任务2号负责对地球上所有事物编码,生成检索信息。
不妨这样类比,Google把互联网上的事物编码,建立了搜索引擎。我们要将地球上所有事物编码,同样方便大家查询。
非常感谢!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29