
CDA数据分析师 出品
编译:Mika
【导读】
你是否想搜索地球表面的实时影像?Marshall和他在Planet的团队将使用世界上最大的卫星群每天拍摄整个地球的图像。现在他们正在进行一个新的项目:使用人工智能对地球上所有的物体进行索引——这可以使船只、树木、房屋和地球上的一切东西都可以搜索,就像谷歌等搜索引擎一样。
4年前就在TED的讲台上,我公布了地球任务1号:
发射一系列卫星,从而能每天拍摄地球全貌,并让大众能获得这些信息。
我们要解决的问题很简单。在网上,你能找到的卫星图片很旧了,甚至早就过时了。但是人类活动每时每刻、每天、每周、每月都在发生。
我们不能解决自己看不见的问题,我们想要给人们工具去看见变化,并且采取行动。
阿波罗17号的宇航员在1972年照下了美丽的蓝色星球图片,这帮助人们了解到我们生活在一个脆弱的星球上。
因此我们想要继续这项事业,为人们提供保护地球的工具。
在完成了多个我们自己的阿波罗任务,发射了人类历史上数量最多的一组卫星后,我们完成了既定目标。
今天,Planet每天都在记录着地球的全貌,任务完成!
这个任务完成了21次火箭发射。这个图让整个过程看起来很轻松,但事实并非如此。
现在我们有超过200个卫星在轨道上环绕运行,将搜集到的数据发送到31个全球站点。
每天,我们总计得到150万张,共计29兆像素的地球表面图片。并且,在地球表面任意一点,我们现在拥有平均超过500张图片。
这些巨大的数据记录着巨大的改变,很多人在使用这些图片。
农业企业用他们来提高农民的产量;商业地图公司用他们来提高地图的精度;政府用他们来监管边疆安全,或是应对自然灾害,比如洪水、火灾或地震;很多非政府组织也在用它们,去追踪并阻止森林砍伐,帮助找到逃离缅甸的难民,或追踪叙利亚危机中的活动,以令各方势力负责。
今天我有幸能够宣布Planet stories的上线,任何人都可以登陆planet.com,创建一个账户,就能在网上看到所有的图片。
这相当于一个实时版的Google Earth,你还可以看到历史数据。你可以比较任何两天,然后发现我们的星球发生的巨大改变。或者你可以用这500张照片创造一个延时视频,去显示该地点随着时间发生的巨大变化。你还可以把它们分享到社交网络上,这很酷。
我们最初为新闻工作者创造了这个工具,为了让他们得到对于世界不带偏见的信息。但现在我们把它向公众开放,用于非盈利或个人用途。
我们希望这个工具能够让人们发现地球发生的变化,并做出改变。
那么人类现在有了这个不断变化的地球数据库,我们的下一个任务是什么呢?
简而言之,就是空间加上人工智能。
我们利用人工智能检索卫星图片中的事物。网上用来在视频中标记猫狗的AI工具,同样可以用来处理我们的照片。
想象这里有艘船,这里有棵树,这是辆车,这是条路,这是个大楼,这是个卡车。
如果你能够对每天产生的几百万张图片,这样处理就基本上创造出了一个数据库。当中包含了地球上每天存在的有形事物,并且这个数据库是可以被搜索的。
这就是我们在做的事。这是一个使用了我们API的原型。
这是北京,如果我们想要统计机场的飞机数量,只需要选择机场,程序就会检索出今天照片中的飞机和以前所有照片中的飞机。然后它生成了这张标记了北京机场飞机的统计图。当然,你可以对世界上任何一个机场这样操作。
让我们来看看温哥华的一个港口,我们用同样的流程来统计船只。放大并选中温和华,搜索这片区域,然后我们搜索船只,就会得到船只的情况。
想象一下这将为负责追踪并组织非法捕鱼的海岸保卫人员提供多么大的帮助。合法的捕鱼船只,用AIS灯塔传达他们的位置。但我们经常发现违反规则的船只,图片不会撒谎。所以海岸保卫人员可以利用这个信息来发现非法船只。
我们将会很快加入不局限于飞机、船只的其他对象,并且我们可以生成这些地点的对象数据流。
从人们的工作流程中进行数字化集成,未来我们还可以建立一个更复杂的浏览器,让人们放入不同来源的信息。
但是最终,我们可以把图像完全抽象化,产生一个可检索的地球表面界面。
想象一下我们可以这样问:
“巴基斯坦有多少栋楼房?对时间做个统计图。” “亚马逊有多少树?还有从上周到这周倒下的树的地点?”
这不是很棒吗?这就是我们想要达到的目标,我们叫它“可检索地球”。
地球任务1号负责每天记录地球表面的图像,并对大众开放。
地球任务2号负责对地球上所有事物编码,生成检索信息。
不妨这样类比,Google把互联网上的事物编码,建立了搜索引擎。我们要将地球上所有事物编码,同样方便大家查询。
非常感谢!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18