京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:俊欣
来源:关于数据分析与可视化
今天小编来给大家介绍一下如何在Pyecharts当中画出炫酷的图表,通过该模块当中的一系列设置,本文我们大致会介绍pyecharts当中的
Pyecharts模块内部内置了10多种不同风格的图表绘制样式,分别是
LIGHT = "light" DARK = "dark" WHITE = "white" CHALK: str = "chalk" ESSOS: str = "essos" INFOGRAPHIC: str = "infographic" MACARONS: str = "macarons" PURPLE_PASSION: str = "purple-passion" ROMA: str = "roma" ROMANTIC: str = "romantic" SHINE: str = "shine" VINTAGE: str = "vintage" WALDEN: str = "walden" WESTEROS: str = "westeros" WONDERLAND: str = "wonderland" HALLOWEEN: str = "halloween"
我们依次来看一下每一种风格出来的样子,这次我们用到的数据集依然是Pyecharts模块当中内置的模块,当然我们首先需要导入相对应的模块
from pyecharts import options as opts from pyecharts.charts import Bar, Page from pyecharts.faker import Collector, Faker from pyecharts.globals import ThemeType
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-Light"))
) c.render("1.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.DARK))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-Dark"))
) c.render("2.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.CHALK))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-Chalk"))
) c.render("3.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.ESSOS))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-Essos"))
) c.render("4.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.INFOGRAPHIC))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-Infographic"))
) c.render("5.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.MACARONS))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-Macarons"))
) c.render("6.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.PURPLE_PASSION))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-PURPLE_PASSION"))
) c.render("7.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.ROMA))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-ROMA"))
) c.render("8.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.ROMANTIC))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-ROMANTIC"))
) c.render("9.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.SHINE))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-Shine"))
) c.render("10.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.VINTAGE))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-Vintage"))
) c.render("11.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.WALDEN))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-Walden"))
) c.render("12.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.WESTEROS))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-Westeros"))
) c.render("13.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.WONDERLAND))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-Wonderland"))
) c.render("14.html")
output
c = ( Bar(init_opts=opts.InitOpts(theme=ThemeType.HALLOWEEN))
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.add_yaxis("商家C", Faker.values())
.add_yaxis("商家D", Faker.values())
.set_global_opts(title_opts=opts.TitleOpts("Theme-Halloween"))
) c.render("15.html")
output
我们同时还能为自己绘制的图表配上自带的背景图片
c = (
Bar(
init_opts=opts.InitOpts(
bg_color={"type": "pattern", "image": JsCode("img"), "repeat": "no-repeat"}
)
)
.add_xaxis(Faker.choose())
.add_yaxis("商家A", Faker.values())
.add_yaxis("商家B", Faker.values())
.set_global_opts(
title_opts=opts.TitleOpts(
title="Bar-背景图基本示例",
subtitle="我是副标题",
title_textstyle_opts=opts.TextStyleOpts(color="white"),
)
)
)
c.add_js_funcs( """
var img = new Image(); img.src = 'https://t7.baidu.com/it/u=2638406194,523661981&fm=193&f=GIF';
""" )
c.render("柱状图-自带背景图.html")
output
好吧,最后一张稍微有点丑,但是读者朋友们可以替换成自己喜欢的背景图片,说不定会非常的好看。
所以看了这么多张图之后,你们最喜欢哪种风格的呢?评论区留言。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04