
如果问:2021年哪种类型的人才最有“钱”途?
具有前沿技术背景的数字化人才一定榜上有名。
近些年来,我国人工智能AI,大数据和云计算等技术飞速发展,与此同时也催生了数字经济的蓬勃发展。如今,网络购物、在线外卖、手机支付等数字化消费场景早已进入我们的日常生活,反过来,数字经济的发展也催生大量新的就业机会。
波士顿咨询公司(BCG)发布的《数字经济下就业与人才研究报告》从就业人群、就业领域和就业方式三个方面分析了数字技术可能对就业生态产生的影响和变革,对于数字经济下的就业人群,拥有“特定专业技能(尤其是数字技术相关技能)”对获取中高端就业机会至关重要。
这份报告也预计,2035年中国整体数字经济规模将接近16万亿美元,总就业容量将达到4.15亿,如果不实施有效的人才战略,到时可能出现一个巨大的人才缺口,不只是在数量上,还有技能方面的缺口。
中国国家统计局的数据显示,2015年从事信息传输、软件和信息技术服务相关工作的人数约有350万。但是,其中拥有中高级专业技能数字人才的比例并不高,如果进一步看拥有人工智能、深度分析、虚拟现实和智能制造等前沿技术的数字人才更是少之又少。
数字人才,是指具备ICT(信息通信技术)专业技能和补充技能的人才,他们是大数据、“互联网+”、人工智能、智能制造等多个领域发展的“主力军”。
数字经济所需要的数字化技能分为三类:普通技能、专业技能和补充技能。
专业技能主要指开发产品和服务所需要数字技能,例如编程、网页设计、电子商务、以及最新的大数据分析和云计算等技能。补充技能是指利用特定的数字技能或平台辅助解决工作中的一些问题,例如处理复杂信息、与合作者和客户沟通、提供方案等等。
随着我国数字经济的蓬勃发展,互联网信息技术与传统产业的融合已成为推动我国经济增长的重要新动力,数字人才成为影响我国经济数字化转型进程的重要因素。
从细分行业的分布来看,近一半的数字人才来自于基础产业,其他数字人才主要分布在制造、金融、消费品、医药、企业服务、娱乐、教育等行业,其中制造业、金融业和消费品行业是数字人才从业人数最多的三大行业。
数字人才特征分布
从整体来看,拥有本科学位的数字人才占比最高,其次为硕士学位,拥有博士学位的 人才占比在3%以下,学历分布一定程度上反映出数字人才中研究型、分析型和管理型人才比较稀缺。
数字人才的专业背景主要集中在计算机科学、软件工程、电气和电子工程等技术类学科,工商管理专业也是数字人才的一大学科来源。
从职位等级的分布来看,数字人才结构比较均衡,初级职位的就业者占到数字人才的一半以上,高级专业人员与管理人员的比例也较高,但仍有提高的空间。
数字人才的必备技能中,对数据处理和分析的能力不容小觑。
随着数字化经济在国内不断深化,互联网、金融、零售、医疗、旅游等行业,都迫切需要专门从事数据采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据分析人才,数据分析已成职场标配技能,数据分析岗也变身为最热门职业之一。
在今天这个数字化环境下,人人都要懂点数据分析成了大趋势,数据分析早已成为职场人士的必备技能。做数据分析,能用数据撬动各项业务增长,你将同时拥有高薪、话语权和不可替代性。
CDA一直致力于数字化人才的转型与赋能,CDA数据分析师认证考试是经国标委发布的数字化人才标准,CDA(Certified Data Analyst),即“CDA数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的专业权威国际资格认证,旨在提升全民数字技能,助力企业数字化转型,推动行业数字化发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-19偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12