京公网安备 11010802034615号
经营许可证编号:京B2-20210330
01、什么是企业架构
企业架构并不是一个新的概念,那企业架构是做什么的呢?企业架构是对真实世界企业的业务流程和IT设施的抽象描述,包括企业战略、组织、职能、业务流程、IT系统等。对于数据领域来讲企业抽象是流程和信息流。在做模型化时要分离出哪些部分呢?比如流程描述把企业看成价值链,所谓价值链就是把原材料开始经过一系列的加工,最终实现为客户提供有价值的产品。
我们做个类比,一个城市需要做整体规划,也会做功能区规划,最终是建筑物和工程局部设计。同理,企业做IT也需要一个架构,企业架构是由很多模块组成,比如财务、供应链、生产系统等,不同模块下也有很多功能,也需要细致的设计。
肯定了企业要做架构,我们来看一下企业架构的历史,信息化架构发展历史是非常久远的,上世纪80年代末开始,直到2011年左右,企业架构被广泛接受。
02、Togaf的 ADM方法论
下面重点介绍下Togaf 的ADM方法论,即所谓的“一备一中心和八个阶段”,主要表现在以下四个方面:
1.预备阶段:达成要建设企业架构的共识,建立架构的保障机制,比如企业架构委员会。
2.设计阶段:包含业务架构、信息系统架构、技术架构,其中信息系统架构包含数据和应用。不同的业务形态,对架构的要求是不同的。比如非智能制造的生产型企业的数据应用需求主要是经营业绩分析,采用传统数仓架构即可;而智能客户运营阶段的服务型企业,数据应用需求主要是基于行为数据为基础的数据驱动的操作层面的业务决策,采用Hadoop架构更节约成本。
3.迁移规划阶段。架构设计完后,制定实施计划,进行架构的执行和迁移规划。
4.架构治理阶段。PMO对项目实施过程进行治理,并对业务或技术变更进行控制。
下面我们来细化一下架构设计方面的内容。
业务架构:主要由业务分析师来完成,包括静态的企业战略方位图、企业组织结构图和企业职能分解图,以及动态的企业业务轨迹图和业务流程图。根据业务流程图可以知道应用系统如何建设,这里面需要的数据是数据架构所需要涉及的。
应用架构:表示的是应用系统与业务系统的映射关系。
数据架构:主要包括数据模型、数据实体-业务功能矩阵、数据实体-应用系统矩阵。企业的数据模型有利于更深入地了解企业数据,便于梳理企业数据资产,便于企业贯彻数据标准。数据实体-业务功能矩阵中可以确认数据由哪些部门负责和使用,有利于权限分配。数据实体-应用系统矩阵,梳理某一数据在不同系统中分布情况。
技术架构:主要包括环境与位置图、网络计算图、平台分解图等。
03、TOGAF构架
主要分为6个部分,静态内容方法论,提供功能模板、参考模型、在架构开发时在不同的阶段进行架构开发指引和技术、企业连续系列参考和架构能力框架。
01、成为智慧企业的必经之路
在我国的大部分人的概念中,BI最大的特点就是对经营业绩、经营成果进行分析。BI宏观业务分析,基于报表和可视化的分析。AI是微观业务分析,建立起对微观个体的洞察以及未来行为的预测。面向BI的数据应用要求数据在数据仓库汇总和标准化即可,因此源系统可以是“竖井”,即数据模型和数据标准在源系统可以不统一。AI最终服务的不是业务报表,而是建模完成后最终返回到业务系统,在一些流程节点当中需要用到算法模型的输出,在业务系统中落地。业务系统中的标准和分析系统中的标准是一体化打通的,因此对IT系统是更为严格的要求。既然要做转变,我们需要做什么事情呢?我们可以从四个方面考虑,分为数据战略、数据架构、算法架构、数据平台。
1. 数据战略:将数据素养纳入组织愿景、战略和核心流程,制定企业级的数据应用规划。
2. 数据架构:根据数据应用的需求,以领域驱动设计为方法论,构建企业级的数据模型及其他组件。企业的数据模型视应用的方向不同,不限于传统的主题模型和维度模型,还有可能是复杂网络模型等等。其中数据模型会分层,面向应用的上层数据主要服务于经营分析、客户洞察、风险识别等;底层的数据更贴近源系统。
3. 算法架构:根据数据应用的需求,使用数据挖掘的方法论,构建企业级的算法模型及其组件。企业的算法模型是应用的方向不同,分为统计模型、机器学习模型、自优化模型等。一般分为两层结构,上层是算法实现层,下层是特征工程层。我们主要讲一下服务行业的算法架构,主要包括决策类预测、识别类模型和业务优化分析。算法模型需要从视角、观点、层次三个方面进行划分,即主体-客体视角、成本-收益观点、微观-宏观层次。对于决策类模型,属于客体视角、成本-收益可比的微观层次模型。识别类模型,属于主体视角、成本-收益不可比的微观层次模型。业务优化分析,属于宏观层次模型。
4. 数据和算法平台:为了支持不同的数据架构和算法架构,则需要建立不同的数据和算法平台。比如传统服务于经营分析的报表是小数据量的,使用单机关系型数据库架构即可,不需要算法平台;而服务于违规交易识别的复杂网络的数据模型,需要进行深度的特征学习,因此数据平台中需要图数据库模块,而算法平台中需要支持并行深度学习。
02、如何能做到持续智能
传统企业由于组织隔离,导致交付时间长、难以支持创新。如果希望提高创新速度、敏捷开发、缩短交付时间,则需要组建数据科学家、开发人员和运营人员携手合作的混合团队。
03、持续智能的能力建设
这是ThoughtWorks所倡导的持续智能能力,主要分为:
1. 识别变化,采用程式化的方式自动识别外部环境的改变,比如在信贷风控中,实时监控数据漂移和数据异常,评估准入规则和风控模型的适用性。
2. 敏捷研究,提供建模人员敏捷工作环境,缩短建模中占时80%的低效特征构建和价值验证工作。
3. 智能建模,在算法模型需要调整时,基于既有的标签和画像特征,快速迭代算法模型。
4. 智能评估,模型上线后,配置好回流数据,可以对模型进行实时评估。
5. 敏捷测试,对模型的稳健性进行快速的全方位测试,缩短算法模型开发和算法模型上线的时间,避免算法模型崩溃导致的业务中断。
举个例子,疫情期间很多传统模型无法使用,针对风险变化快速建模的能力显得尤为重要。因为客群发生很大的漂移,需要公司快速建模的能力,尤其是针对敏捷研究,可以在短时间内快速上线。
DataPipline实现标签提取,特征工程,样本选取。打通生产环境和分析环境的数据标准,实现企业级的数据标准版本管理和算法模型版本管理。对于分析建模人员而言,实现入模特征的所用即所得,避免模型上线时重新编辑特征。
DataOps敏捷研究智能建模,可以实现数据与算法的融合和管理。建立起端到端的数据算法模型开发团队,避免开发语言转换、数据转换等无效率环节。
04、ThoughtWorks数字化愿景
为了实现构建智慧、敏捷、场景驱动的美好愿望,需要实现深入客户洞察、缩短产品上市时间、创造数字化收益等战略子目标。数据资产和算法能力是支持各个战略子目标的基础。而ThoughtWorks认为支持能力建设的五个数字化基础组件是必不可少的,分别是低摩擦运营模式、企业级平台战略、用户体验设计和数字化产品能力、智能驱动的决策机制、工程师文化和持续交付的思维。
数据资管出品
作者:研究猿
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20