京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA数据分析师 出品
作者: Lydia Dishman
编译: Mika
LinkedIn通过对用户数据的深入挖掘,列出了美国最具吸引力的40强企业。
查看完整TOP40名单:
https://lists.linkedin.com/2016/top-attractors/en/us
前20名中只有可口可乐,Under Armour和Black Rock不属于科技行业。如今,许多企业都认为自己属于科技领域,比如高盛集团的CEO,他将这家金融公司称为科技公司。
同时值得注意的是,编程已经成为各行各业最重要的工作技能。
正如LinkedIn报告所指出的那样,随着每家公司都在进行技术驱动化转型,能否吸引更多人才将决定企业的兴衰。
在美国最受欢迎的40强企业中,谷歌位居首位。除了提供免费餐饮和按摩等福利外,谷歌还拥有支持多样性和打造“完美”团队的企业文化,这也是为什么谷歌能让顶尖的人才趋之若鹜。一位前谷歌招聘人员估计,他在一年内曾查看了300万份简历。
那么在顶尖公司工作需要哪些技能呢?
毋庸置疑,科技知识是必备技能之一。
同时,大数据平台Paysa的CEO兼联合创始人Chris Bolte表示,对于那些不具备传统计算机科学的人才来说,还有另一个趋势。
“近年来呈现爆炸性发展的是深度学习,”Bolte说,“这是利用神经网络的机器学习和人工智能的一个分支。”
简单的说,神经网络就像计算机内部由相互连接的脑细胞构成网络,可以解析图像或视频等信号。它能以人类的模式学会识别模式和做出决策。
“深度学习扩展了许多层,比之前计算力达到的层次更深,”Bolte解释说,“有了互联网巨头创造的数据量加上计算的进步,因此这些深度学习方法能够更完整地模拟信号。”
作为更广泛的技能,人工智能和机器学习为各种技术人才提供了机会。
微软的资深机器学习招聘人员Amanda Papp透露:“我们的员工中并非每个人都必须有计算机科学博士学位。还有许多人具有物理、生物学等背景。”
Paysa的数据显示,在顶尖科技公司中,编程技能仍然非常关键。
在谷歌,6万名员工中近一半(45%)会Java,42%的人使用Python。只有13%的人会Git(开源软件开发),14%的人掌握云计算技能。
谷歌中83%员工拥有学士学位,7%的人毕业于斯坦福大学。其他的毕业院校包括科罗拉多矿业学院,卡内基梅隆大学和都柏林大学等。
排名第二的Salesforce公司有2万名员工,但员工的技能特点与谷歌略有不同。46%的人掌握云计算技术,39%的人精通敏捷方法(软件开发的项目管理)。
80%的员工具有学士学位,毕业院校主要包括加州大学伯克利分校,东南大学,亚利桑那州立大学和伊利诺伊大学厄巴纳分校等学校。
在Facebook,熟练掌握编程语言至关重要。Paysa的数据显示,Facebook中46%的员工使用Java,44%的人使用Python。其他技能包括C ++,分布式系统,算法和机器学习等。
与前两家公司类似,大多数员工(84%)拥有学士学位,但同时42%的员工也拥有硕士学位。最近的一项研究表明,越来越多的雇主更青睐具有高学历的人才,这也证明了这点。
但苹果并不太推崇员工具备高学历。苹果公司的10万名员工中有71%具有学士学位,28%的员工并没有学位。这在一定程度上是因为,并非所有员工都在Cupertino总部从事开发工作。
苹果公司员工掌握的普遍技能也可以看出这点,其中软件开发占28%,其次是Java占27%。
排在第五位的是亚马逊,这家电子商务巨头从西雅图附近的华盛顿大学吸引了大量人才。其中83%的员工具有学士学位,超过一半(57%)的员工精通Java,45%掌握软件开发技能。
令人惊讶的是,作为为众多网站提供服务的公司而言,只有不到四分之一(21%)的人精通网络服务技能。
尽管Facebook和谷歌等注重技术实力,但这些公司在招聘时并不只看重硬技能。
谷歌人事业务负责人Laszlo Bock称,他们在招聘时需要看重以下四个方面:
1. 一般的认知能力
不仅仅是智力,还包括吸收信息的能力。
2. 应急式领导力
当你看到问题时,你会介入并尝试解决它。之后当不再需要你时,能及时放下,能够放下权力也很重要。
3. 文化契合力
我们称之为Googleyness(谷歌精神),包括上进心和团队精神、倾听及沟通能力等特质。
4. 职位的相关专业知识
这些技能对于刚开始找工作的求职者来说尤为重要。
根据PayScale的一项调查显示,招聘人员正在寻找具备沟通,团队合作和领导力等软技能的求职者。多达60%的雇主认为初级求职者缺乏批判性思维和解决问题的能力。
PayScale研究的共同发起人,Future Workplace的研究主管Dan Schawbel 曾表示,“每天如果没有新的挑战就不完整,越早掌握这些技能,你就越有可能被聘用。“
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05