京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:AirPython
作者:星安果
大家好,我是安果!
PgSQL,全称为 PostgreSQL,是一款免费开源的关系型数据库
相比最流行的 Mysql 数据库,PgSQL 在可靠性、数据完整性、扩展性方面具有绝对的优势
本篇文章将聊聊如何使用 Python 操作 PgSQL 数据库
Python 操作 PgSQL,需要先安装依赖包「 psycopg2 」
# 安装依赖包
pip3 install psycopg2
接下来,就可以使用 Python 来操作数据库了
2-1 数据库连接及游标对象
使用 psycopg2 中的「 connect() 」方法连接数据库,创建数据库连接对象及游标对象
import psycopg2
# 获得连接对象
# database:数据库名称
# user:用户名
# password:密码
# host:数据库ip地址
# port:端口号,默认为5432
conn = psycopg2.connect(database="db_name", user="postgres", password="pwd", host="127.0.0.1", port="5432")
# 获取游标对象
cursor = conn.cursor()
获取游标对象后,就可以执行 SQL,进而操作数据库了
2-2 插入数据
首先,编写插入数据的 SQL 语句及参数( 可选 )
# 构建SQL语句
# 方式一:直带参数
sql = "INSERT INTO student (name,age)
VALUES (%s, '%s')" %
('xag',23)
# 方式二:参数分离
sql = """INSERT INTO student (name,age) VALUES (%s, %s)"""
# 参数
params = ('xag',23)
然后,使用游标对象执行 SQL
# 执行sql
# 注意:params可选,根据上面的参数方式来选择设置
cursor.execute(sql,[params])
接着,使用连接对象提交事务
# 事务提交
conn.commit()
最后,释放游标对象及数据库连接对象
# 释放游标对象及数据库连接对象
cursor.close()
conn.close()
2-3 查询数据
游标对象的 fetchone()、fetchmany(size)、fetchall() 这 3个函数即可以实现单条数据查询、多条数据查询、全部数据查询
# 获取一条记录
one_data = cursor.fetchone()
print(one_data)
# 获取2条记录
many_data = cursor.fetchmany(2)
print(many_data)
# 获取全部数据
all_data = cursor.fetchall()
print(all_data)
需要注意的是,条件查询与上面的插入操作类似,条件语句可以将参数分离出来
# 条件查询 SQL语句
sql = """SELECT * FROM student where id = %s;"""
# 对应参数,参数结尾以逗号结尾
params = (1,)
# 执行SQL
cursor.execute(sql, params)
# 获取所有数据
datas = cursor.fetchall()
print(datas)
2-4 更新数据
更新操作和上面操作一样,唯一不同的是,执行完 SQL 后,需要使用连接对象提交事务,才能将数据真实更新到数据库中
def update_one(conn, cursor):
"""更新操作"""
# 更新语句
sql = """update student set name = %s where id = %s """
params = ('AirPython', 1,)
# 执行语句
cursor.execute(sql, params)
# 事务提交
conn.commit()
# 关闭数据库连接
cursor.close()
conn.close()
2-5 删除数据
删除数据同更新数据操作类似
def delete_one(conn, cursor):
"""删除操作"""
# 语句及参数
sql = """delete from student where id = %s """
params = (1,)
# 执行语句
cursor.execute(sql, params)
# 事物提交
conn.commit()
# 关闭数据库连接
cursor.close()
conn.close()
通过上面操作,可以发现 Python 操作 PgSQl 与 Mysql 类似,但是在原生 SQL 编写上两者还是有很多差异性
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05