京公网安备 11010802034615号
经营许可证编号:京B2-20210330
职场,就像是修罗场,有的人经历飞速成长阶段一步一步走向人生巅峰,也有的人迷茫在自己职场的方向,无法自拔。当然,职场上没有人不希望升职加薪,获得更多的晋升空间。
疫情期间,大多数白领都经历了一些“职场灰暗时刻”。裁员降薪一度成为较普遍的现象,年长白领的工作机会在变少,年轻白领的工资缩水。面对不确定的大环境,唯一的确定因素就是自身职场竞争力。由此可见,一个人如果想混的开,关键在于他能给企业带来什么样的价值。
如今,我们生活在数字化的浪潮下,在各行各业的发展中,数字化转型都是绕不开的话题。
企业在发展过程中会遇到大量的数据,它是数字化转型的基础,数据找不到、看不懂、不准确、不及时,都会成为企业数字化转型路上的重大阻碍,这个时候就需要用到数据分析师。
数据分析不是简单的“分析数据”,它是一种解决问题的方法,一个解决问题的过程,甚至可以认为是一种方法观。作为一名数据分析工作者,这里所说的数据分析是一个相对狭义的概念,如果没有合理的执行体系和标准化的工作流程,就会形成表面化的错误,从而影响到工作效率,更重要的是影响最终的分析结论,都说“按流程办事”,数据分析也不例外。
1、明确目的
用数据说话,从数据分析的角度解决问题,用数据支持结论。从监测角度来说,业务问题一般以两种方式出现,第一种是在长期监测中发现某一环节运行异常,另外一种是在开展业务任务时即时遇到阻碍,不管怎么样,问题摆在面前需要解决。
在开始数据分析之前,必须明确要分析什么,要解决什么问题,一项数据分析,不是一蹴而就,需要过程,如果不能做到有的放矢,多半会导致分析方向发生偏移,盲目无序的开头将导致后续的工作白白浪费。发生了什么?为什么要这样做?要得到什么?如何得到?等等这些问题需要在分析之前弄清楚,只有先明确了目的,对数据分析的主要内容有针对的了解,才能作出合理有效的解决方案。
2、获取数据
按照数据分析的目的、具体内容,收集所需数据,此时最重要的是保证获取数据的真实可靠性。这些数据源就像盖房子打地基,没有这个基础,不管采用多么高级的分析方法都是白费力气。“garbage in,garbage out”。另外,不要过于期望一口气将所有数据都采集全,在预处理和数据分析阶段你可能会发现还缺少某一部分数据源,这是反馈调节的过程,需要耗费大量的时间反复甄别。
3、预处理
现在存储于后台的数据太多了,以前做项目担心没有真实可靠的数据,现在这个问题没有那么复杂,但数据太多却引发了其他问题。辛苦采集到的数据口径不一致,存储格式不同,不符合数据分析要求还有待派生新的变量,这些过程看似简单却非常有必要!
仅仅预处理以上这些问题还不够,当数据分析方法复杂时,我们还需对采集的数据进行筛选构成小的数据集,对于数据集中变量的分布、缺少、描述统计指标进行一定程度的分析。可以说,获取数据+预处理将耗费整个执行过程的大部分时间,很繁琐,但非常的重要。
4、数据分析
在这个阶段建议采用简单有效的分析方法,切记不要“为了分析而分析”。数据分析方法有很多种,不一定越是高级的方法就越有效。数据分析的工具也一样,能用Excel就不用SPSS,选择合理得当高效的方法和工具,只要能解决问题即可。如果你很自信,可以合理选择有效驾驭,那选用一些高级的方法和工具对提高整个数据分析过程的共识性、专业性、精确性都有非常之大的帮助。
和前两个环节一样,这个过程也是费力不讨好的,而且伴有枯燥、沮丧、焦虑等心态,不断调整自己的心态也是这三个阶段的重点和关键。
5、提交报告
做一个数据分析的项目,不能不下结论!
雷声大,雨点小的事情,作为数据分析师千万要避免发生。提交数据分析报告,提出解决问题的方案或建议,对业务问题进行及时处理,养成这个良好的习惯。数据分析报告采用PPT格式、Word格式都可以,做到结构合理、结论坚定,图文并茂。
这个阶段切记不要搞得太花哨,语气低调不要太夸张,有自己的结论,有自己的观点,能有效解决问题,并针对类似问题进行监控,防止再次发生。
按流程办事的好处就在于各环节的不断反馈,出现偏差时返回到各个环节进行审核优化,突出解决问题的主线,总之一句话,数据分析不是儿戏,需要一个相对标准化的流程来遵循。
目前数据分析几乎覆盖了所有的行业,互联网、金融、咨询、电信、零售、医疗、旅游等,涉及岗位包括大数据、数据分析、市场、产品、运营、咨询、投资、研发等。
这是在某招聘网站截取的数据分析师就业薪资,可以看到拥有一年工作经验的数据分析师薪资就可以达到10K以上。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09