
SPSS分析技术:多元方差分析
下面要介绍多元方差分析的内容,多元方差分析是研究多个自变量与多个因变量相互关系的一种统计理论方法,又称多变量分析。多元方差分析实质上是单因变量方差分析(包括单因素和多因素方差分析)的发展和推广,适用于自变量同时对两个或两个以上的因变量产生影响的情况,用来分析自变量取不同水平时这些因变量的均值是否存在显著性差异。
分析原理
多元方差分析可以看做是多因素方差分析和协方差分析合并后的拓展,能够一次性做两个以上因变量的多因素方差分析和协方差分析。多元方差分析的优点是可以在一次研究中同时检验具有多个水平的多个因素各自对多个因变量的影响以及各因素交互作用后对多个因变量的影响,以及多个因变量作为一个整体模型,自变量对模型的影响。
多元方差分析的条件是:各个自变量的每个水平必须是独立的随机样本,服从正态分布且各总体方差相等。因变量和协变量必须是数值型变量且协变量与因变量相关。自变量可以是数值型分类变量,也可以是字符型分类变量,这是方差分析的基本条件。
案例分析
随着经济的发展,城市生活的节奏也是越来越快,白领的健康状况成为了社会的热门话题。人们晨练和早餐的状况很能够反映人们的生活习惯和健康状况,所以有研究者对不同婚姻状况、性别、年龄阶段的人做了一次较大规模的随机调查,获得880个有效数据。现在用多元方差分析方法分析不同婚姻状况、性别和年龄阶段的人的晨炼状况和早餐状况是否有显著性的差别。
(例题数据文件已经上传到QQ群中,需要的朋友可以前往下载)
分析步骤
1、选择菜单【分析】-【一般线性模型】-【多变量】,选择“锻炼情况”和“早餐状况”作为因变量;再选择“年龄”、“婚姻状况”和“性别”作为自变量。本题中不涉及协变量,所以不用选择协变量。按照下图所示操作。
2、单击【选项】按钮,打开“多变量:选项”对话框,按下图操作。
3、单击【确定】,输出分析结果。
结果解读
1、协方差矩阵的齐性检验结果;
该检验的零假设是:因变量的协方差矩阵在各组中相等。从表可知,显著性水平P值为0.000,小于0.05,则拒绝零假设,因变量的协方差矩阵在各个组中不相等,表明各个分组的均值不是完全相等的,说明有的变量对模型(两个因变量整体)有显著影响,有的自变量则对模型(两个因变量模型)没有影响。
2、多变量检验结果
因为协方差矩阵的齐性Box’s检验中显著性概率P=0.000,小于0.05,拒绝方差齐性假设。因此要以“Pillai’s 轨迹”、“Hotelling 轨迹”和“Roy最大根”三个指标作为多变量检验的判断依据。从结果来看,年龄和婚姻状况的三种指标的显著性概率均为P=0.000,都小于0.05,达到显著程度,表明年龄和婚姻状况对模型(两个因变量整体)有显著影响,以此类推,在所有因子和因子交互中,年龄、婚姻状况、年龄*性别和年龄*婚姻状况*性别等自变量或自变量交互对模型(两个因变量整体)产生了影响,其它的自变量或自变量交互对模型(两个因变量整体)的影响可以忽略不计。但是想要知道纠结是对模型(两个因变量整体)中的那个自变量产生影响,就要对各因变量分别进行单因素方差分析,也就是下面的主体间效应检验结果。
3、误差方差齐性检验
结果表明,晨练和首选早餐在各组中的方差齐性检验不成立,p=0.000,小于0.05。说明各个自变量和自变量交互对两个因变量的独立影响不完全一样,有的显著有的不显著。
4、主体间效应的检验结果
从结果来看,年龄对晨练的效应显著性为0.000,小于0.001,达到极显著的水平,对于首选早餐的效应显著性为0.036,小于0.05,也是显著的。婚姻状况对晨练的p=0.602,没有达到显著水平,即对因变量晨练没有影响,但是对首选早餐的p=0.000,达到显著水平,即对婚姻状况首选早餐影响重大。在自变量交互里面,只有年龄*性别和年龄*性别*婚姻状况对晨练有显著性影响,其它的没有显著性影响。
综上所述,年龄对于早餐选择和晨练的影响都是显著的,这也符合现在的生活节奏,年轻人能坚持晨练的少于老年人,同时,年轻人对于早餐的选择也多是以方便快捷为主。婚姻状况对晨练没有影响,但是对早餐有影响,一般结婚后,家庭生活稳定,夫妻在一起吃早饭的情况较单身人士多。交互作用的体现比较容易理解,都是在有这两个因素的影响下表现的数据指标显著。数据分析培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15