
SPSS分析技术:多元方差分析
下面要介绍多元方差分析的内容,多元方差分析是研究多个自变量与多个因变量相互关系的一种统计理论方法,又称多变量分析。多元方差分析实质上是单因变量方差分析(包括单因素和多因素方差分析)的发展和推广,适用于自变量同时对两个或两个以上的因变量产生影响的情况,用来分析自变量取不同水平时这些因变量的均值是否存在显著性差异。
分析原理
多元方差分析可以看做是多因素方差分析和协方差分析合并后的拓展,能够一次性做两个以上因变量的多因素方差分析和协方差分析。多元方差分析的优点是可以在一次研究中同时检验具有多个水平的多个因素各自对多个因变量的影响以及各因素交互作用后对多个因变量的影响,以及多个因变量作为一个整体模型,自变量对模型的影响。
多元方差分析的条件是:各个自变量的每个水平必须是独立的随机样本,服从正态分布且各总体方差相等。因变量和协变量必须是数值型变量且协变量与因变量相关。自变量可以是数值型分类变量,也可以是字符型分类变量,这是方差分析的基本条件。
案例分析
随着经济的发展,城市生活的节奏也是越来越快,白领的健康状况成为了社会的热门话题。人们晨练和早餐的状况很能够反映人们的生活习惯和健康状况,所以有研究者对不同婚姻状况、性别、年龄阶段的人做了一次较大规模的随机调查,获得880个有效数据。现在用多元方差分析方法分析不同婚姻状况、性别和年龄阶段的人的晨炼状况和早餐状况是否有显著性的差别。
(例题数据文件已经上传到QQ群中,需要的朋友可以前往下载)
分析步骤
1、选择菜单【分析】-【一般线性模型】-【多变量】,选择“锻炼情况”和“早餐状况”作为因变量;再选择“年龄”、“婚姻状况”和“性别”作为自变量。本题中不涉及协变量,所以不用选择协变量。按照下图所示操作。
2、单击【选项】按钮,打开“多变量:选项”对话框,按下图操作。
3、单击【确定】,输出分析结果。
结果解读
1、协方差矩阵的齐性检验结果;
该检验的零假设是:因变量的协方差矩阵在各组中相等。从表可知,显著性水平P值为0.000,小于0.05,则拒绝零假设,因变量的协方差矩阵在各个组中不相等,表明各个分组的均值不是完全相等的,说明有的变量对模型(两个因变量整体)有显著影响,有的自变量则对模型(两个因变量模型)没有影响。
2、多变量检验结果
因为协方差矩阵的齐性Box’s检验中显著性概率P=0.000,小于0.05,拒绝方差齐性假设。因此要以“Pillai’s 轨迹”、“Hotelling 轨迹”和“Roy最大根”三个指标作为多变量检验的判断依据。从结果来看,年龄和婚姻状况的三种指标的显著性概率均为P=0.000,都小于0.05,达到显著程度,表明年龄和婚姻状况对模型(两个因变量整体)有显著影响,以此类推,在所有因子和因子交互中,年龄、婚姻状况、年龄*性别和年龄*婚姻状况*性别等自变量或自变量交互对模型(两个因变量整体)产生了影响,其它的自变量或自变量交互对模型(两个因变量整体)的影响可以忽略不计。但是想要知道纠结是对模型(两个因变量整体)中的那个自变量产生影响,就要对各因变量分别进行单因素方差分析,也就是下面的主体间效应检验结果。
3、误差方差齐性检验
结果表明,晨练和首选早餐在各组中的方差齐性检验不成立,p=0.000,小于0.05。说明各个自变量和自变量交互对两个因变量的独立影响不完全一样,有的显著有的不显著。
4、主体间效应的检验结果
从结果来看,年龄对晨练的效应显著性为0.000,小于0.001,达到极显著的水平,对于首选早餐的效应显著性为0.036,小于0.05,也是显著的。婚姻状况对晨练的p=0.602,没有达到显著水平,即对因变量晨练没有影响,但是对首选早餐的p=0.000,达到显著水平,即对婚姻状况首选早餐影响重大。在自变量交互里面,只有年龄*性别和年龄*性别*婚姻状况对晨练有显著性影响,其它的没有显著性影响。
综上所述,年龄对于早餐选择和晨练的影响都是显著的,这也符合现在的生活节奏,年轻人能坚持晨练的少于老年人,同时,年轻人对于早餐的选择也多是以方便快捷为主。婚姻状况对晨练没有影响,但是对早餐有影响,一般结婚后,家庭生活稳定,夫妻在一起吃早饭的情况较单身人士多。交互作用的体现比较容易理解,都是在有这两个因素的影响下表现的数据指标显著。数据分析培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18