SPSS分析技术:多元方差分析
下面要介绍多元方差分析的内容,多元方差分析是研究多个自变量与多个因变量相互关系的一种统计理论方法,又称多变量分析。多元方差分析实质上是单因变量方差分析(包括单因素和多因素方差分析)的发展和推广,适用于自变量同时对两个或两个以上的因变量产生影响的情况,用来分析自变量取不同水平时这些因变量的均值是否存在显著性差异。
分析原理
多元方差分析可以看做是多因素方差分析和协方差分析合并后的拓展,能够一次性做两个以上因变量的多因素方差分析和协方差分析。多元方差分析的优点是可以在一次研究中同时检验具有多个水平的多个因素各自对多个因变量的影响以及各因素交互作用后对多个因变量的影响,以及多个因变量作为一个整体模型,自变量对模型的影响。
多元方差分析的条件是:各个自变量的每个水平必须是独立的随机样本,服从正态分布且各总体方差相等。因变量和协变量必须是数值型变量且协变量与因变量相关。自变量可以是数值型分类变量,也可以是字符型分类变量,这是方差分析的基本条件。
案例分析
随着经济的发展,城市生活的节奏也是越来越快,白领的健康状况成为了社会的热门话题。人们晨练和早餐的状况很能够反映人们的生活习惯和健康状况,所以有研究者对不同婚姻状况、性别、年龄阶段的人做了一次较大规模的随机调查,获得880个有效数据。现在用多元方差分析方法分析不同婚姻状况、性别和年龄阶段的人的晨炼状况和早餐状况是否有显著性的差别。
(例题数据文件已经上传到QQ群中,需要的朋友可以前往下载)
分析步骤
1、选择菜单【分析】-【一般线性模型】-【多变量】,选择“锻炼情况”和“早餐状况”作为因变量;再选择“年龄”、“婚姻状况”和“性别”作为自变量。本题中不涉及协变量,所以不用选择协变量。按照下图所示操作。
2、单击【选项】按钮,打开“多变量:选项”对话框,按下图操作。
3、单击【确定】,输出分析结果。
结果解读
1、协方差矩阵的齐性检验结果;
该检验的零假设是:因变量的协方差矩阵在各组中相等。从表可知,显著性水平P值为0.000,小于0.05,则拒绝零假设,因变量的协方差矩阵在各个组中不相等,表明各个分组的均值不是完全相等的,说明有的变量对模型(两个因变量整体)有显著影响,有的自变量则对模型(两个因变量模型)没有影响。
2、多变量检验结果
因为协方差矩阵的齐性Box’s检验中显著性概率P=0.000,小于0.05,拒绝方差齐性假设。因此要以“Pillai’s 轨迹”、“Hotelling 轨迹”和“Roy最大根”三个指标作为多变量检验的判断依据。从结果来看,年龄和婚姻状况的三种指标的显著性概率均为P=0.000,都小于0.05,达到显著程度,表明年龄和婚姻状况对模型(两个因变量整体)有显著影响,以此类推,在所有因子和因子交互中,年龄、婚姻状况、年龄*性别和年龄*婚姻状况*性别等自变量或自变量交互对模型(两个因变量整体)产生了影响,其它的自变量或自变量交互对模型(两个因变量整体)的影响可以忽略不计。但是想要知道纠结是对模型(两个因变量整体)中的那个自变量产生影响,就要对各因变量分别进行单因素方差分析,也就是下面的主体间效应检验结果。
3、误差方差齐性检验
结果表明,晨练和首选早餐在各组中的方差齐性检验不成立,p=0.000,小于0.05。说明各个自变量和自变量交互对两个因变量的独立影响不完全一样,有的显著有的不显著。
4、主体间效应的检验结果
从结果来看,年龄对晨练的效应显著性为0.000,小于0.001,达到极显著的水平,对于首选早餐的效应显著性为0.036,小于0.05,也是显著的。婚姻状况对晨练的p=0.602,没有达到显著水平,即对因变量晨练没有影响,但是对首选早餐的p=0.000,达到显著水平,即对婚姻状况首选早餐影响重大。在自变量交互里面,只有年龄*性别和年龄*性别*婚姻状况对晨练有显著性影响,其它的没有显著性影响。
综上所述,年龄对于早餐选择和晨练的影响都是显著的,这也符合现在的生活节奏,年轻人能坚持晨练的少于老年人,同时,年轻人对于早餐的选择也多是以方便快捷为主。婚姻状况对晨练没有影响,但是对早餐有影响,一般结婚后,家庭生活稳定,夫妻在一起吃早饭的情况较单身人士多。交互作用的体现比较容易理解,都是在有这两个因素的影响下表现的数据指标显著。数据分析培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03