京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS分析技术:多元方差分析
下面要介绍多元方差分析的内容,多元方差分析是研究多个自变量与多个因变量相互关系的一种统计理论方法,又称多变量分析。多元方差分析实质上是单因变量方差分析(包括单因素和多因素方差分析)的发展和推广,适用于自变量同时对两个或两个以上的因变量产生影响的情况,用来分析自变量取不同水平时这些因变量的均值是否存在显著性差异。
分析原理
多元方差分析可以看做是多因素方差分析和协方差分析合并后的拓展,能够一次性做两个以上因变量的多因素方差分析和协方差分析。多元方差分析的优点是可以在一次研究中同时检验具有多个水平的多个因素各自对多个因变量的影响以及各因素交互作用后对多个因变量的影响,以及多个因变量作为一个整体模型,自变量对模型的影响。
多元方差分析的条件是:各个自变量的每个水平必须是独立的随机样本,服从正态分布且各总体方差相等。因变量和协变量必须是数值型变量且协变量与因变量相关。自变量可以是数值型分类变量,也可以是字符型分类变量,这是方差分析的基本条件。
案例分析
随着经济的发展,城市生活的节奏也是越来越快,白领的健康状况成为了社会的热门话题。人们晨练和早餐的状况很能够反映人们的生活习惯和健康状况,所以有研究者对不同婚姻状况、性别、年龄阶段的人做了一次较大规模的随机调查,获得880个有效数据。现在用多元方差分析方法分析不同婚姻状况、性别和年龄阶段的人的晨炼状况和早餐状况是否有显著性的差别。
(例题数据文件已经上传到QQ群中,需要的朋友可以前往下载)
分析步骤
1、选择菜单【分析】-【一般线性模型】-【多变量】,选择“锻炼情况”和“早餐状况”作为因变量;再选择“年龄”、“婚姻状况”和“性别”作为自变量。本题中不涉及协变量,所以不用选择协变量。按照下图所示操作。
2、单击【选项】按钮,打开“多变量:选项”对话框,按下图操作。
3、单击【确定】,输出分析结果。
结果解读
1、协方差矩阵的齐性检验结果;
该检验的零假设是:因变量的协方差矩阵在各组中相等。从表可知,显著性水平P值为0.000,小于0.05,则拒绝零假设,因变量的协方差矩阵在各个组中不相等,表明各个分组的均值不是完全相等的,说明有的变量对模型(两个因变量整体)有显著影响,有的自变量则对模型(两个因变量模型)没有影响。
2、多变量检验结果
因为协方差矩阵的齐性Box’s检验中显著性概率P=0.000,小于0.05,拒绝方差齐性假设。因此要以“Pillai’s 轨迹”、“Hotelling 轨迹”和“Roy最大根”三个指标作为多变量检验的判断依据。从结果来看,年龄和婚姻状况的三种指标的显著性概率均为P=0.000,都小于0.05,达到显著程度,表明年龄和婚姻状况对模型(两个因变量整体)有显著影响,以此类推,在所有因子和因子交互中,年龄、婚姻状况、年龄*性别和年龄*婚姻状况*性别等自变量或自变量交互对模型(两个因变量整体)产生了影响,其它的自变量或自变量交互对模型(两个因变量整体)的影响可以忽略不计。但是想要知道纠结是对模型(两个因变量整体)中的那个自变量产生影响,就要对各因变量分别进行单因素方差分析,也就是下面的主体间效应检验结果。
3、误差方差齐性检验
结果表明,晨练和首选早餐在各组中的方差齐性检验不成立,p=0.000,小于0.05。说明各个自变量和自变量交互对两个因变量的独立影响不完全一样,有的显著有的不显著。
4、主体间效应的检验结果
从结果来看,年龄对晨练的效应显著性为0.000,小于0.001,达到极显著的水平,对于首选早餐的效应显著性为0.036,小于0.05,也是显著的。婚姻状况对晨练的p=0.602,没有达到显著水平,即对因变量晨练没有影响,但是对首选早餐的p=0.000,达到显著水平,即对婚姻状况首选早餐影响重大。在自变量交互里面,只有年龄*性别和年龄*性别*婚姻状况对晨练有显著性影响,其它的没有显著性影响。
综上所述,年龄对于早餐选择和晨练的影响都是显著的,这也符合现在的生活节奏,年轻人能坚持晨练的少于老年人,同时,年轻人对于早餐的选择也多是以方便快捷为主。婚姻状况对晨练没有影响,但是对早餐有影响,一般结婚后,家庭生活稳定,夫妻在一起吃早饭的情况较单身人士多。交互作用的体现比较容易理解,都是在有这两个因素的影响下表现的数据指标显著。数据分析培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27