
最近,知乎热榜上有这样一个问题:如何快速成为数据分析师?
相信这也是数据分析小白或者数据分析职场萌新,非常感兴趣的一个话题。
不知道大家对于“快速”的定义是多久时间,我可以跟大家分享一下自己和身边朋友的看法,希望能给你带来一定启发。
数据分析师根据自己的工作岗位、行业、工作内容等等,可以分成非常多的种类。
但总体可以区分成两个方向,即业务方向和技术方向。当然,在业务和技能上两类也是需要相互结合的。
其中,想要短时间内快速成为技术方向的数据分析师,是非常很难的。一定要底子深基础牢,编程语言基础、统计学知识、算法、数据结构样样不能少,甚至得精通,而这些不是我们自习两三个月就能完全掌握的。
而业务方向的数据分析师,在目前的招聘市场上需求岗位最多。这种岗位的进入门槛会相对较低一点,所以对于0基础想转行的同学,自然业务型数据分析师会更适合。但如果入职后不能尽快掌握业务,提升自己的数据思维能力,就很有可能就变成“只会提数的表哥表姐”。
所以,想快速成为一名数据分析师,又不想入职后沦为“打杂”人员。就应该知道自己应该持续学习并掌握的各项技能,以及自己进入数分行业后的发展路径。
本节我们只讨论业务向的数据分析师的必备能力,把分析师简单划分为初级、中级、高级三个阶段:
各阶段数据分析师的差异体现在三个方面:业务技能、执行管理能力、业内影响力。
后两者能力属于软实力,需要在工作中逐渐掌握。作为初学者,第一步最需要的是掌握业务技能,最好能了解完整的学习路线。
那么,初级数据分析师所必备的业务技能都包含哪些?
1、业务能力。数据分析工作并不是简单的数据统计与展示,它有一个重要的前提就是需要懂业务,包括行业知识、公司业务及流程等,最好有自己独到的见解。数据分析的目的就是通过研究数据实现转化增长,若脱离行业背景和公司业务内容,数据分析就是一堆没有价值的数据图表而已。
2、工具使用能力。数据分析工具是实现数据分析方法理论的工具,面对越来越庞杂的数据,数据分析师必须要掌握相应的工具去对这些数据进行采集、清洗、分析和处理,以快速准确地的到最后的结果。常用工具有:Excel、SQL、Python、R、Tableau、BI等
3、分析能力。数据分析师必须要掌握一些行之有效的的数据分析方法,并能灵活的与自身实际工作相结合。数据分析师常用的数据分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。
最后,我们将初级数据分析师应该掌握的技能做了一张树状图。
那么,在了解了“快速成为数据分析师”需要掌握的技能之后,如何提升这些技能?前面也提到业务意识非常重要,那一个新手小白面对从未接触过的业务,如何培养自己的意识?不想成为提数机器,那么发掘数据背后的价值又有什么诀窍吗?
这些问题,一篇文章难以一一解答,有些摸索了几年却找不到方向的数据分析师也难以给出答案,而高阶一点的,则往往需要付费咨询。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15