京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS详细教程 | 配对样本的t检验
1、问题与数据
某研究使用克矽平治疗矽肺病患者10名,分别测得治疗前、后患者的血红蛋白含量(g/dL),数据如下。试问该药对矽肺患者的血红蛋白含量有无影响?
2、对数据结构的分析
整个数据资料涉及1组患者(共10名),每名患者有治疗前、后2个数据,采用自身前后对照设计,测量指标为血红蛋白含量,因此属于配对设计的定量资料。
要想知道克矽平对血红蛋白的含量有无影响,则要比较治疗前、后血红蛋白含量的差异是否有统计学意义。若2组数据服从正态分布的要求,可选用配对样本的t检验。
3、SPSS分析方法
(1)数据录入SPSS
(2)选择Analyze→Compare Means→Paired-Samples T Test
(3)选项设置
主对话框设置:分别把“before”和“after”变量放入Paired Variables框中的Variable1和Variable2(Pair 1)→OK
4、结果解读
Paired Samples Statistics表格给出了治疗前、后血红蛋白含量的部分统计信息,包括均数(Mean)、配对数(N)、标准差(Std. Deviation)和样本均数的标准误(Std. Error Mean)。
Paired Samples Correlations 表格给出了治疗前、后血红蛋白含量的相关系数(Correlation),为0.676,P(Sig.)=0.032,具有相关关系。
Paired Samples Test表格给出了统计检验的结果。Mean为治疗前、后血红蛋白差值的均数,Std. Deviation为差值的标准差,Std. Error Mean为差值均数的标准误,95% Confidence Internal of the Difference(Lower,Upper)为差值均数的95%可信区间。t=-0.531,P(Sig.(2-tailed))=0.609 >0.05,差异无统计学意义。
5、撰写结论
使用克矽平治疗前,矽肺患者的血红蛋白含量为(13.4±1.3)g/dL,治疗后的血红蛋白含量为(13.6±1.0)g/dL,尚不能认为克矽平对矽肺患者的血红蛋白含量有影响(t=-0.531,P=0.609)。
6、配对样本t检验的适用情况
(1)同一研究对象给予处理前、后比较;
(2)同一研究对象给予不同处理比较;
(3)不同研究对象配对后,随机接受不同处理比较。
7、延伸阅读
本研究拟分析克矽平对血红蛋白含量的影响,实质上是将治疗前、后血红蛋白的差值作为分析指标,判断差值的总体均数是否为零,即分析差值与0相比是否有统计学意义。如果差异具有统计学意义,则表示血红蛋白含量有变化。因此,在SPSS软件中我们也可以生成一个治疗前、后血红蛋白的差值变量(dif=after-before),进行单样本均数的t检验(总体均数为0)。
结果如下:t=0.531,P=0.609 >0.05,尚不能认为克矽平对矽肺患者的血红蛋白含量有影响,与配对t检验结果一致。(t值相差一个负号是由于二者的差值计算公式刚好相反,如果配对t检验中,Paired Variables框先放“after”,再放“before”,则t值结果相等)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22