
来源:早起Python
作者:陈熹、刘早起
有时我们需要将一份或者多份PDF文件中的图片提取出来,如果采取在线的网站实现的话又担心图片泄漏,手动操作又觉得麻烦,其实用Python也可以轻松搞定!
今天就跟大家系统分享几种Python提取 PDF 图片的方法。其实没有非常完美的方法,每种方法提取效率都不是百分之百,因此可以考虑用多种方法进行互补,主要将涉及:
基于 fitz 库和正则搜索提取图片基于 pdf2image 库的两种方法提取图片
fitz 是 pymupdf 的子模块,需要先用命令行安装 pymupdf:
pip install pymupdf
但注意导入时使用 import fitz 导入模块!
下面的代码就利用 fitz 库提取图片需要通过正则匹配图片元素,将模板元素转化为像素后再以图片形式写出
import fitz import re import os
file_path = r'C:xxxxxx.pdf' # PDF 文件路径 dir_path = r'C:xxx' # 存放图片的文件夹 def pdf2image1(path, pic_path):
checkIM = r"/Subtype(?= */Image)" pdf = fitz.open(path)
lenXREF = pdf._getXrefLength()
count = 1 for i in range(1, lenXREF):
text = pdf._getXrefString(i)
isImage = re.search(checkIM, text)
if not isImage:
continue pix = fitz.Pixmap(pdf, i)
new_name = f"img_{count}.png" pix.writePNG(os.path.join(pic_path, new_name))
count += 1 pix = None pdf2image1(file_path, dir_path)
运行提取示例文件后结果如下:
可以看到,有一些很小的色块也被提取成图片,那么怎么过滤掉它们呢?
有一个简单的方法是通过大小过滤,pix 像素在 fitz 库中存在一个重要的方法 pix.size 可以反映像素多少,简单的色素块该值较低,可以通过设置一个阈值过滤。以阈值 10000 为例过滤:
import fitz import re import os
file_path = r'C:xxxxxx.pdf' # PDF 文件路径 dir_path = r'C:xxx' # 存放图片的文件夹 def pdf2image1(path, pic_path):
checkIM = r"/Subtype(?= */Image)" pdf = fitz.open(path)
lenXREF = pdf._getXrefLength()
count = 1 for i in range(1, lenXREF):
text = pdf._getXrefString(i)
isImage = re.search(checkIM, text)
if not isImage:
continue pix = fitz.Pixmap(pdf, i)
if pix.size < 10000: # 在这里添加一处判断一个循环 continue # 不符合阈值则跳过至下
new_name = f"img_{count}.png" pix.writePNG(os.path.join(pic_path, new_name))
count += 1 pix = None pdf2image1(file_path, dir_path)
可以看到,全部图片都被正常提取!
一看名字就知道这个库的用处了,官方文档为https://www.cnpython.com/pypi/pdf2image
可以简单通过 pip install pdf2image 安装,但poppler才是真正起做用的转换器,因此需要额外安装和配置:
“
windows用户必须安装poppler for Windows,然后将bin/文件夹添加到PATHMac用户必须安装poppler for Mac
”
具体发挥作用的代码官方文档也给出了详细的说明:
那么我们就分别尝试这两种方法:
from pdf2image import convert_from_path,convert_from_bytes import tempfile from
pdf2image.exceptions import PDFInfoNotInstalledError,
PDFPageCountError, PDFSyntaxError import os
file_path = r'C:xxxxxx.pdf' # PDF 文件路径 dir_path = r'C:xxx'
# 存放图片的文件夹 def pdf2image2(file_path, dir_path):
images = convert_from_path(file_path, dpi=200)
for image in images:
if not os.path.exists(dir_path):
os.makedirs(dir_path)
image.save(file_path + f'img_{images.index(image)}.png', 'PNG')
pdf2image2(file_path, dir_path)
可以成功提取图片。再试试第二种方法:
from pdf2image import convert_from_path,convert_from_bytes import tempfile from
pdf2image.exceptions import
PDFInfoNotInstalledError, PDFPageCountError, PDFSyntaxError import os
file_path = r'C:xxxxxx.pdf' # PDF 文件路径 dir_path = r'C:xxx' # 存放图片的文件夹 def pdf2image3(file_path,
dir_path): images = convert_from_bytes(open(file_path, 'rb').read())
for image in images:
if not os.path.exists(dir_path):
os.makedirs(dir_path)
image.save(file_path + f'img_{images.index(image)}.png', 'PNG')
pdf2image3(file_path, dir_path)
可以看到结果和之前一致,PDF中全部图片都被提取出来!
再补充一下。核心方法covert_from_bytes包含大量参数,可以自行修改。几个常用参数总结如下:
值得一提的是thread_count 参数,可以启动多线程会大大加快转换速度,尤其是 PDF 页面较多时。有兴趣的读者可以做尝试。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10