
来源:早起Python
作者:陈熹、刘早起
大家好,我是早起。
在之前的文章中我们曾详细的讲解了如何使用openpyxl 操作Excel,其实在Python中还有其他可以直接操作 Excel 文件的库,
如 xlwings、xlrd、xlwt 等等,本文就将讲解另一个优秀的库xlwings
开头还是想说一下,各个库之间没有明确的好坏之分,每个库都有其适合的应用场景,
并且xlwings 和 openpyxl 许多区别决定了它们的能力是互为补充:
“
xlwings:需要安装有 Excel 软件,支持 .xls和 .xlsx 格式;可以调用 Excel 文件中 VBA 写好的程序;
和 matplotlib 以及 pandas 的兼容性强
openpyxl:不需要 Excel 软件,仅支持 .xlsx 格式
”
xlwings 是一个非标准库,需要在命令行中安装,在终端(Mac)/命令行(Win)使用pip安装即可,一般不会出现什么问题。
pip install xlwings
对 xlwings 的核心理解就在于下面这张图:
可以看到,和 xlwings 直接对接的是 apps,也就是 Excel 应用程序,然后才是 工作簿 books 和工作表 sheets,这点和 openpyxl 有较大区别,也正是因为此,xlwings 需要依然安装有 Excel 应用程序的环境
使用app打开
import xlwings as xw
app = xw.App(visible=True, add_book=False) # 程序可见,只打开不新建工作薄 app.display_alerts = False
# 警告关闭 app.screen_updating = False # 屏幕更新关闭
这里需要注意,因为 xlwings 是以程序 apps 作为初级操作对象,因此开始和最后都是基于 app 的开和关
path = r"C:Scientific ResearchPython" wb = app.books.open(path + r'practice.xlsx')
wb.save() # 保存文件 wb.close() # 关闭文件 app.quit() # 关闭程序
打开表格又分一下两种情况,即 固定 和 活动:
xw.Book(path + r'practice.xlsx') # 固定打开表格 xw.books.open(path + r'practice.xlsx') #
频繁打开表格
固定和频繁打开涉及到一个概念,称活动对象,它使 xlwings 的操作更显灵活:
# 活动应用程序 app = xw.apps.active # 活动工作簿 wb = xw.books.active
# 在活动app wb = app.books.active # 在特定app # 活动工作表 sheet = xw.sheets.active
# 在活动工作簿 sheet = wb.sheets.active # 在特定工作簿 # 活动工作表的Range xw.Range('A1')
无论是新建还是打开都记得保存工作簿、关闭工作簿、关闭程序
path = r"C:Scientific ResearchPython" wb = app.books.add()
wb.save(path + r'new_practice.xlsx')
wb.close()
app.quit()
示例文件 practice.xlsx 如下:
下面的代码部分不再显示程序的开闭代码,利于直观看到重点:
path = r"C:Scientific ResearchPython" wb = app.books.open(path + r'practice.xlsx') #
类似 openpyxl 中的 sheet = workbook.active sheet = wb.sheets.active #
获取单个单元格的值 A1 = sheet.range('A1').value
print(A1) # 获取横向或纵向多个单元格的值,返回列表 A1_A3 = sheet.range('A1:A3').value
print(A1_A3) # 获取给定范围内多个单元格的值,返回嵌套列表,按行为列表 A1_C4 = sheet.range('A1:C4').value
print(A1_C4)
在 xlwings 中,可以通过 sheet.range 获取一个或多个单元格进行操作,另外也可以不用 sheet.range 获取:
# 获取单个单元格的值 A1 = sheet['A1'].value print(A1) # 获取横向或纵向多个单元格的值,返回列表 A1_A3
= sheet['A1:A3'].value print(A1_A3) # 获取给定范围内多个单元格的值,返回嵌套列表,按行为列表 A1_C4
= sheet['A1:C4'].value print(A1_C4)
无论是单个单元格还是多个单元格,可以用 .value直接获取,输出结果和使用 .range 完全一致,也避免了类似 openpyxl
对于多个单元格需要再建立循环遍历才能获取值。
还有一种类似 pandas 切片获取范围内所有值的方法:
sheet = wb.sheets.active A1_B2 = sheet[:2, :2].value print(A1_B2)
以下为写入 1 个单元格、一行或一列写入多个单元格、写入范围内多个单元格代码
# 写入 1 个单元格 sheet.range('A2').value = '大明' # 一行或一列写入多个单元格 #
横向写入A1:C1 sheet.range('A1').value = [1,2,3] # 纵向写入A1:A3 sheet.range('A1').options(transpose=True).value =
[1,2,3] # 写入范围内多个单元格 sheet.range('A1').options(expand='table').value = [[1,2,3], [4,5,6]]
例如,如果要给 practice.xlsx 添加一行新的记录,代码如下:
import xlwings as xw
app = xw.App(visible=True, add_book=False)
app.display_alerts = False app.screen_updating = False path = r"C:Scientific ResearchPython" wb
= app.books.open(path + r'practice.xlsx')
sheet = wb.sheets.active
sheet.range('A5').value = ['小兰', 23, '女']
wb.save()
wb.close()
app.quit()
有两种方法实现
# 方法一 shape = sheet.used_range.shape print(shape) # 方法二 nrow = sheet.api.UsedRange.Rows.count
ncol = sheet.api.UsedRange.Columns.count print(nrow) print(ncol)
# 输出 print(sheet.range('A1:A2').row_height) print(sheet.range('A1:A2').column_width)
# 修改
sheet.range('A1:A2').row_height = 15 sheet.range('A1:A2').column_width = 10
可以调用Excel公式,这是pandas无法完成的
# 获取公式 print(sheet.range('B2').formula_array) # 写入公式 sheet.range('B2').formula='=SUM(A1,A2)'
当然类似openpyxl等样式修改也是支持的
# 获取颜色 print(sheet.range('C1').color) # 设置颜色 sheet.range('C1').color = (255, 0, 120) #
清除颜色 sheet.range('C1').color = None
以上仅是针对一些常用操作给出代码示例与讲解,更多的操作可以阅读官方文档,大家也可以自己对比一下
xlwings和其他库在部分操作上的异同。未来我们也会更新基于xlwings的办公自动化案例!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05