京公网安备 11010802034615号
经营许可证编号:京B2-20210330
来源:早起Python
作者:陈熹、刘早起
大家好,我是早起。
在之前的文章中我们曾详细的讲解了如何使用openpyxl 操作Excel,其实在Python中还有其他可以直接操作 Excel 文件的库,
如 xlwings、xlrd、xlwt 等等,本文就将讲解另一个优秀的库xlwings
开头还是想说一下,各个库之间没有明确的好坏之分,每个库都有其适合的应用场景,
并且xlwings 和 openpyxl 许多区别决定了它们的能力是互为补充:
“
xlwings:需要安装有 Excel 软件,支持 .xls和 .xlsx 格式;可以调用 Excel 文件中 VBA 写好的程序;
和 matplotlib 以及 pandas 的兼容性强
openpyxl:不需要 Excel 软件,仅支持 .xlsx 格式
”
xlwings 是一个非标准库,需要在命令行中安装,在终端(Mac)/命令行(Win)使用pip安装即可,一般不会出现什么问题。
pip install xlwings
对 xlwings 的核心理解就在于下面这张图:
可以看到,和 xlwings 直接对接的是 apps,也就是 Excel 应用程序,然后才是 工作簿 books 和工作表 sheets,这点和 openpyxl 有较大区别,也正是因为此,xlwings 需要依然安装有 Excel 应用程序的环境
使用app打开
import xlwings as xw
app = xw.App(visible=True, add_book=False) # 程序可见,只打开不新建工作薄 app.display_alerts = False
# 警告关闭 app.screen_updating = False # 屏幕更新关闭
这里需要注意,因为 xlwings 是以程序 apps 作为初级操作对象,因此开始和最后都是基于 app 的开和关
path = r"C:Scientific ResearchPython" wb = app.books.open(path + r'practice.xlsx')
wb.save() # 保存文件 wb.close() # 关闭文件 app.quit() # 关闭程序
打开表格又分一下两种情况,即 固定 和 活动:
xw.Book(path + r'practice.xlsx') # 固定打开表格 xw.books.open(path + r'practice.xlsx') #
频繁打开表格
固定和频繁打开涉及到一个概念,称活动对象,它使 xlwings 的操作更显灵活:
# 活动应用程序 app = xw.apps.active # 活动工作簿 wb = xw.books.active
# 在活动app wb = app.books.active # 在特定app # 活动工作表 sheet = xw.sheets.active
# 在活动工作簿 sheet = wb.sheets.active # 在特定工作簿 # 活动工作表的Range xw.Range('A1')
无论是新建还是打开都记得保存工作簿、关闭工作簿、关闭程序
path = r"C:Scientific ResearchPython" wb = app.books.add()
wb.save(path + r'new_practice.xlsx')
wb.close()
app.quit()
示例文件 practice.xlsx 如下:
下面的代码部分不再显示程序的开闭代码,利于直观看到重点:
path = r"C:Scientific ResearchPython" wb = app.books.open(path + r'practice.xlsx') #
类似 openpyxl 中的 sheet = workbook.active sheet = wb.sheets.active #
获取单个单元格的值 A1 = sheet.range('A1').value
print(A1) # 获取横向或纵向多个单元格的值,返回列表 A1_A3 = sheet.range('A1:A3').value
print(A1_A3) # 获取给定范围内多个单元格的值,返回嵌套列表,按行为列表 A1_C4 = sheet.range('A1:C4').value
print(A1_C4)
在 xlwings 中,可以通过 sheet.range 获取一个或多个单元格进行操作,另外也可以不用 sheet.range 获取:
# 获取单个单元格的值 A1 = sheet['A1'].value print(A1) # 获取横向或纵向多个单元格的值,返回列表 A1_A3
= sheet['A1:A3'].value print(A1_A3) # 获取给定范围内多个单元格的值,返回嵌套列表,按行为列表 A1_C4
= sheet['A1:C4'].value print(A1_C4)
无论是单个单元格还是多个单元格,可以用 .value直接获取,输出结果和使用 .range 完全一致,也避免了类似 openpyxl
对于多个单元格需要再建立循环遍历才能获取值。
还有一种类似 pandas 切片获取范围内所有值的方法:
sheet = wb.sheets.active A1_B2 = sheet[:2, :2].value print(A1_B2)
以下为写入 1 个单元格、一行或一列写入多个单元格、写入范围内多个单元格代码
# 写入 1 个单元格 sheet.range('A2').value = '大明' # 一行或一列写入多个单元格 #
横向写入A1:C1 sheet.range('A1').value = [1,2,3] # 纵向写入A1:A3 sheet.range('A1').options(transpose=True).value =
[1,2,3] # 写入范围内多个单元格 sheet.range('A1').options(expand='table').value = [[1,2,3], [4,5,6]]
例如,如果要给 practice.xlsx 添加一行新的记录,代码如下:
import xlwings as xw
app = xw.App(visible=True, add_book=False)
app.display_alerts = False app.screen_updating = False path = r"C:Scientific ResearchPython" wb
= app.books.open(path + r'practice.xlsx')
sheet = wb.sheets.active
sheet.range('A5').value = ['小兰', 23, '女']
wb.save()
wb.close()
app.quit()
有两种方法实现
# 方法一 shape = sheet.used_range.shape print(shape) # 方法二 nrow = sheet.api.UsedRange.Rows.count
ncol = sheet.api.UsedRange.Columns.count print(nrow) print(ncol)
# 输出 print(sheet.range('A1:A2').row_height) print(sheet.range('A1:A2').column_width)
# 修改
sheet.range('A1:A2').row_height = 15 sheet.range('A1:A2').column_width = 10
可以调用Excel公式,这是pandas无法完成的
# 获取公式 print(sheet.range('B2').formula_array) # 写入公式 sheet.range('B2').formula='=SUM(A1,A2)'
当然类似openpyxl等样式修改也是支持的
# 获取颜色 print(sheet.range('C1').color) # 设置颜色 sheet.range('C1').color = (255, 0, 120) #
清除颜色 sheet.range('C1').color = None
以上仅是针对一些常用操作给出代码示例与讲解,更多的操作可以阅读官方文档,大家也可以自己对比一下
xlwings和其他库在部分操作上的异同。未来我们也会更新基于xlwings的办公自动化案例!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02