公众号:接地气学堂
作者:接地气的陈老师
2020年,你在工作中做了几个成功的数据分析项目呢?问题一出,又是发新手同学一阵哀嚎:
“没项目做呀!”
“每天瞎忙啊!”
“业务方:我早知道了,你做的有啥用,你分析的不准确一键三连呀!”
今天我们先不谈“为啥每天瞎忙没项目做”的问题,就谈“为啥已经开工的项目会失败”。因为认真梳理下会发现,至少四分之三的数据分析项目失败,和这个事有关。
需求1:
“我们要建立大数据用户画像”。这个需求很常见,业务部门动不动就“来个用户画像分析”。那么问题便来了,真的做这个需求,有多大概率扑街?
非常大
因为不知道做了到底干啥呀。业务方可能很随意的说:做了用户画像,就知道用户特征了。问题是:这个需求报表不能满足吗!如果真是不知道,直接把用户特征各个维度跑一遍数,列个excel表就好了呀,为哈要费事上一个用户画像项目呢?!
这种需求叫:无目标需求。漫无目标,大概率做完了被人扔一句:“我早知道了!”因为对方确实可以通过日常报表、用户调查、自己体验获得一些数据。这种项目接过来过,夯吃夯吃打标签、整数据、做看板,最后铁定失败。
需求2:
受到场景1启发,有同学会问:做用户画像干什么?
业务方答:做来看哪些用户喜欢A产品
那么,真的做这个需求,有多大概率扑街?
非常大
问题在什么叫“喜欢”???
如果是“过往X个月内购买次数大于X次,购买金额大于X元”叫喜欢,那直接拖一张报表就能满足需求呀,为啥需要起一个项目。
如果是“未来有大概率会购买A产品”,那实际需要的就不是什么用户画像,而是针对A产品的预测。那起个毛线的用户画像项目,直接做预测呀。
这种需求叫:需求不清晰。驴头不对马嘴,这种项目接过来做,分分钟落一个:“你做的没啥用”的评价。找不准真实的痛点,项目必定失败。
需求3:
受到场景2启发,同学知道了业务方想预测销售
现在,业务方提出:希望能精准预测销量
那么,真的做这个需求,有多大概率扑街?
非常大
问题在:预测的到底是啥玩意不清楚。
如果预测的是新上市款,压根没数据呀,预测个毛线。这时候,最关键的问题就是:要不要做测试。如果已经有选定产品,需要测试效果,这就是测试问题。直接设计ABtest,拿去测一测效果,收集一波数据再做预测。
如果没有做预测,这时候实际上是:分类问题。基于竞争对手的选择,自身商品管理的判断,过往同价位/同客群/同品类销量走势,对待上的新品进行评估。由于完全是凭空预测,因此输出的结果必定不能很准。这时候最好的做法是先对产品定性,它的潜力是:爆款、流量款、利润款、补充款、普通款、还是吊车尾。有了定性判断,再看配多少资源,多少人力给它。再看能不能基于资源投入预测。
这种需求叫:需求不具体。看似有目标,但是少了背景条件,甚至一字之差,离题万里。这种项目接过来做,分分钟落一个:“你做的没啥用”的评价。找不准真实的痛点,项目必定失败。很有可能夯吃夯吃塞了一堆现有产品数据,结果发现根本没考虑业务动作,也不能推广到新品,最后落一句:分析不精准啊!
需求4:
受到场景3启发,同学问了业务方,得知:
想预测销售,是指导销售团队工作。
那么,真的做这个需求,有多大概率扑街?
非常大
问题在:知道预测结果,人家又能干啥。
如果预测业绩很好,so what!销售还是该干啥干啥呀,说不定还会搞搞阵,藏点单啥的。
如果预测业绩不好,so what!这东西根本不需要预测呀,拖一张报表就能看到做的好不好呀,看到业绩不达标,还需要预测吗,麻溜的开发客户去呀。
所以这个预测值,对于销售部门来说没啥实际用处。这个需求可能只是出于好奇,可能就是随口一说。总之,这叫:需求不够刚性。这不是业务部门的核心问题点,因此项目上了也是白上,最后很容易被批为:分析有啥用。
需求5:
受到场景4启发,同学问了业务方,得知:
想预测销售,是指导库存管理。因为供应链不能控制销售,只能被动看订单供货,所以能预测出来销售值就很重要。如果销售预测准了,备货自然能按照销售来备,库存损失也能减少多好!这次是刚需了吧。
那么,真的做这个需求,有多大概率扑街?
非常大
问题在:影响库存损耗的不止一个因素,只考虑销售太过偏颇。
这叫:需求不准确。本质上,供应链损耗受到采购计划、销售能力、生产排期三方面影响,和销售有关,也有可能和领导私心(收了供应商钱,野心过大的扩张计划)有关。因此只抓一个因素,很有可能不能解决问题库存损耗的问题。绕路走,是数据分析头号大忌。
既然预测是为了减少损耗,就直接把目标设为减少损耗。注意:即使再优化,也不可能做到马上进马上出,因为总有一些市场意外,总有一些商品滞销,所以最后控制目标也不是直接压到0,而是控到一个可接受水平,或者控制促使整体损耗下降。这样才是可能成功的目标,梳理到此,可以继续往下做了(如下图)
四分之三的数据分析需求,在开始的时候就注定失败的。
l 不清晰
l 不具体
l 啥都想搞
l 不知道做了啥用
l 做了也没啥用
只是听说市面上流行“数字化转型”“人工智能大数据精准用户画像”就急匆匆往上怼。最后自然必败无疑。
有趣的是,识别伪需求的最好方法,就是拖一张报表。通过业务部门对报表的利用情况,可以反向观察:
l 哪些部门真的数据,哪些就是说说而已
l 哪些数据真的能有用处,哪些看了就看了没屁用
l 看了数据能做哪些动作,哪些又是看了也无能为力
这样,即使业务部门没有能力讲清楚需求,数据分析师也能够对项目目标、工作重点、输出内容有自己的判断。所以做数据分析的同学们,不要被网络上爽文洗脑了:报表才是数据分析工作的立命之所。一个会玩报表的数据分析师,才有机会做出高大上的模型。切记切记。有同学会感兴趣:到底啥样才算会玩报表,有兴趣的话,本篇集齐60留言,下一篇我们来分享,敬请期待哦。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03