京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者:豌豆花下猫
来源:Python猫
之前我们对比了两种创建列表的方法,即字面量用法 [] 与内置类型用法 list(),进而分析出它们在运行速度上的差异。
在分析为什么 list() 会更慢的时候,文中说到它需要经过名称查找与函数调用两个步骤,那么,这就引出了一个新的问题:list() 不是内置类型么,为什么它不能直接就调用创建列表的逻辑呢?也就是说,为什么解释器必须经过名称查找,才能“认识”到该做什么呢?
其实原因很简单:内置函数/内置类型的名称并不是关键字,它们只是解释器内置的一种便捷功能,方便开发者开箱即用而已。
PS:内置函数 built-in function 和内置类型 built-in type 很相似,但 list() 实际是一种内置类型而不是内置函数。我曾对这两种易混淆的概念做过辨析,请查看这篇文章。为了方便理解与表述,以下统称为内置函数。
1、内置函数的查找优先级最低
内置函数的名称并不属于关键字,它们是可以被重新赋值的。
比如下面这个例子:
# 正常调用内置函数
list(range(3)) # 结果:[0, 1, 2]
# 定义任意函数,然后赋值给 list
def test(n):
print("Hello World!")
list = test
list(range(3)) # 结果:Hello World!
在这个例子中,我们将自定义的 test 赋值给了 list,程序并没有报错。这个例子甚至还可以改成直接定义新的同名函数,即"def list(): …"。
这说明了 list 并不是 Python 限定的关键字/保留字。
查看官方文档,可以发现 Python3.9 有35个关键字,明细如下:
如果我们将上例的 test 赋值给任意一个关键字,例如"pass=test",就会报错:SyntaxError: invalid syntax。
由此,我们可以从这个角度看出内置函数并不是万能的:它们的名称并不像关键字那般稳固不变,虽然它们处在系统内置作用域里,但是却可以被用户局部作用域的对象所轻松拦截掉!
因为解释器查找名称的顺序是“局部作用域->全局作用域->内置作用域”,因此内置函数其实是处在最低优先级。
对于新手来说,这有一定的可能会发生意想不到的情况(内置函数有 69 个,要全记住是有难度的)。
那么,为什么python 不把所有内置函数的名称都设为不可复写的关键字呢?
一方面原因是它想控制关键字的数量,另一方面可能是想留给用户更多的自由。内置函数只是解释器的推荐实现而已,开发者可以根据需要,实现出与内置函数同名的函数。
不过,这样的场景极少,而且开发者一般会定义成不同名的函数,以 Python 标准库为例,ast模块有 literal_eval() 函数(对标 eval() 内置函数)、pprint 模块有 pprint() 函数(对标 print() 内置函数)、以及itertools模块有 zip_longest() 函数(对标 zip() 内置函数)……
2、内置函数可能不是最快的
由于内置函数的名称并非保留的关键字,以及它处于名称查找的末位顺序,所以内置函数有可能不是最快的。
上篇文章展示了 [] 比 list() 快 2~3 倍的事实,其实这还可以推广到 str()、tuple()、set()、dict() 等等内置类型中,都是字面量用法稍稍快于内置类型用法。
对于这些内置类型,当我们调用 xxx() 时,可以简单理解成正在做类的实例化。在面向对象语言中,类先实例化再使用,这是再正常不过的。
但是,这样的做法有时也显得繁琐。为了方便使用,python 给一些常用的内置类型提供了字面量表示法,也就是""、[]、()、{} 等等,表示字符串、列表、元组和字典等数据类型。
一般而言,所有编程语言都必须有一些字面量表示,但基本都局限在数字类型、字符串、布尔类型以及 null 之类的基础类型。
Python 中还增加了几种数据结构类型的字面量,所以是更为方便的,同时这也解释了为什么内置函数可能不是最快的。
一般而言,同样的完备功能,内置函数总是比我们自定义的函数要快,因为解释器可以做一些底层的优化,例如 len() 内置函数肯定比用户定义的 x.len() 函数快。
有些人据此形成了“内置函数总是更快”的认识误区。
解释器内置函数相对于用户定义函数,前者接近于走后门;而字面量表示法相对于内置函数,前者是在走更快的后门。
也就是说,在有字面量表示法的情况下,某些内置函数/内置类型并不是最快的!
小结
诚然,python 本身并不是万能的,那它的任何语法构成部分(内置函数/类型),就更不是万能的了。但是,一般我们会认为内置函数/类型总归是“高人一等”的,是受到诸多特殊优待的,显得像是“万能的”。
本文从“list() 竟然会败给 []”破题,从两个角度揭示了内置函数其实存在着某种不足:内置函数的名称并不是关键字,而内置作用域位于名称查找的最低优先级,因此在调用时,某些内置函数/类型的执行速度就明显慢于它们对应的字面量表示法。
——热门课程推荐:
想从事业务型数据分析师,您可以点击>>>“数据分析师”了解课程详情;
想从事大数据分析师,您可以点击>>>“大数据就业”了解课程详情;
想成为人工智能工程师,您可以点击>>>“人工智能就业”了解课程详情; 想了解Python数据分析,您可以点击>>>“Python数据分析师”了解课程详情;
想咨询互联网运营,你可以点击>>>“互联网运营就业班”了解课程详情;
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22